Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750052628> ?p ?o ?g. }
- W2750052628 abstract "This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures." @default.
- W2750052628 created "2017-08-31" @default.
- W2750052628 creator A5014498883 @default.
- W2750052628 creator A5015567863 @default.
- W2750052628 creator A5039521014 @default.
- W2750052628 creator A5042922973 @default.
- W2750052628 creator A5058453821 @default.
- W2750052628 creator A5061321503 @default.
- W2750052628 creator A5082140726 @default.
- W2750052628 creator A5085933261 @default.
- W2750052628 date "2017-08-24" @default.
- W2750052628 modified "2023-10-02" @default.
- W2750052628 title "Riemannian multi-manifold modeling and clustering in brain networks" @default.
- W2750052628 cites W1894414046 @default.
- W2750052628 cites W1968248619 @default.
- W2750052628 cites W1969763012 @default.
- W2750052628 cites W1984804736 @default.
- W2750052628 cites W1986280275 @default.
- W2750052628 cites W1992476998 @default.
- W2750052628 cites W1994341528 @default.
- W2750052628 cites W1999653836 @default.
- W2750052628 cites W2001567161 @default.
- W2750052628 cites W2004067290 @default.
- W2750052628 cites W2008995227 @default.
- W2750052628 cites W2014739666 @default.
- W2750052628 cites W2014886698 @default.
- W2750052628 cites W2016354087 @default.
- W2750052628 cites W2031677665 @default.
- W2750052628 cites W2035765120 @default.
- W2750052628 cites W2058187841 @default.
- W2750052628 cites W2059985310 @default.
- W2750052628 cites W2066400502 @default.
- W2750052628 cites W2095438393 @default.
- W2750052628 cites W2096610373 @default.
- W2750052628 cites W2097341236 @default.
- W2750052628 cites W2098646941 @default.
- W2750052628 cites W2106540986 @default.
- W2750052628 cites W2112709449 @default.
- W2750052628 cites W2116083905 @default.
- W2750052628 cites W2123722617 @default.
- W2750052628 cites W212537071 @default.
- W2750052628 cites W2130031954 @default.
- W2750052628 cites W2131216884 @default.
- W2750052628 cites W2132914434 @default.
- W2750052628 cites W2138905229 @default.
- W2750052628 cites W2139054653 @default.
- W2750052628 cites W2149338181 @default.
- W2750052628 cites W2159929956 @default.
- W2750052628 cites W2170702893 @default.
- W2750052628 cites W2178225550 @default.
- W2750052628 cites W2191365218 @default.
- W2750052628 cites W2403074563 @default.
- W2750052628 cites W2486096428 @default.
- W2750052628 cites W2913754613 @default.
- W2750052628 cites W2963956545 @default.
- W2750052628 cites W3013880646 @default.
- W2750052628 cites W3100451188 @default.
- W2750052628 cites W3103861421 @default.
- W2750052628 cites W4206033904 @default.
- W2750052628 cites W4246748375 @default.
- W2750052628 cites W4249252599 @default.
- W2750052628 cites W4250657332 @default.
- W2750052628 cites W4256188663 @default.
- W2750052628 cites W88657458 @default.
- W2750052628 doi "https://doi.org/10.1117/12.2274405" @default.
- W2750052628 hasPublicationYear "2017" @default.
- W2750052628 type Work @default.
- W2750052628 sameAs 2750052628 @default.
- W2750052628 citedByCount "0" @default.
- W2750052628 crossrefType "proceedings-article" @default.
- W2750052628 hasAuthorship W2750052628A5014498883 @default.
- W2750052628 hasAuthorship W2750052628A5015567863 @default.
- W2750052628 hasAuthorship W2750052628A5039521014 @default.
- W2750052628 hasAuthorship W2750052628A5042922973 @default.
- W2750052628 hasAuthorship W2750052628A5058453821 @default.
- W2750052628 hasAuthorship W2750052628A5061321503 @default.
- W2750052628 hasAuthorship W2750052628A5082140726 @default.
- W2750052628 hasAuthorship W2750052628A5085933261 @default.
- W2750052628 hasConcept C11413529 @default.
- W2750052628 hasConcept C12362212 @default.
- W2750052628 hasConcept C127413603 @default.
- W2750052628 hasConcept C138885662 @default.
- W2750052628 hasConcept C151876577 @default.
- W2750052628 hasConcept C153120616 @default.
- W2750052628 hasConcept C153180895 @default.
- W2750052628 hasConcept C154945302 @default.
- W2750052628 hasConcept C166957645 @default.
- W2750052628 hasConcept C181104567 @default.
- W2750052628 hasConcept C202444582 @default.
- W2750052628 hasConcept C205649164 @default.
- W2750052628 hasConcept C2776401178 @default.
- W2750052628 hasConcept C2779343474 @default.
- W2750052628 hasConcept C2779593128 @default.
- W2750052628 hasConcept C33923547 @default.
- W2750052628 hasConcept C41008148 @default.
- W2750052628 hasConcept C41895202 @default.
- W2750052628 hasConcept C529865628 @default.
- W2750052628 hasConcept C70518039 @default.
- W2750052628 hasConcept C73555534 @default.
- W2750052628 hasConcept C78519656 @default.