Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750152668> ?p ?o ?g. }
- W2750152668 endingPage "217" @default.
- W2750152668 startingPage "181" @default.
- W2750152668 abstract "We present an overview of Bayesian statistical models and their use in simulation-based optimization. Bayesian schemes are valuable for their ability to model our beliefs about an uncertain environment (for example, the unknown output distribution of a complex simulation), as well as the evolution of these beliefs over time as information is acquired through simulation. With this ability, we can make adaptive decisions that improve over time and anticipate the effect of new information before it is observed. We discuss two broad classes of such adaptive algorithms, show how they interface with the underlying Bayesian statistical models, and summarize the comparative advantages of each algorithmic approach. We also discuss how approximate Bayesian models can be designed to retain the advantages of adaptive learning in problems where the observations are censored or incomplete." @default.
- W2750152668 created "2017-08-31" @default.
- W2750152668 creator A5026060144 @default.
- W2750152668 creator A5044367354 @default.
- W2750152668 date "2017-01-01" @default.
- W2750152668 modified "2023-09-23" @default.
- W2750152668 title "Bayesian Belief Models in Simulation-Based Decision-Making" @default.
- W2750152668 cites W135104305 @default.
- W2750152668 cites W1491420040 @default.
- W2750152668 cites W1510052597 @default.
- W2750152668 cites W1536615069 @default.
- W2750152668 cites W1579925870 @default.
- W2750152668 cites W1601081659 @default.
- W2750152668 cites W1730950075 @default.
- W2750152668 cites W181733065 @default.
- W2750152668 cites W1833693572 @default.
- W2750152668 cites W1877740990 @default.
- W2750152668 cites W1931792391 @default.
- W2750152668 cites W1986412858 @default.
- W2750152668 cites W2006656814 @default.
- W2750152668 cites W2033413738 @default.
- W2750152668 cites W2037728958 @default.
- W2750152668 cites W2039521867 @default.
- W2750152668 cites W2039522160 @default.
- W2750152668 cites W2041570732 @default.
- W2750152668 cites W2046282120 @default.
- W2750152668 cites W2054352980 @default.
- W2750152668 cites W2057777714 @default.
- W2750152668 cites W2061144551 @default.
- W2750152668 cites W2063180182 @default.
- W2750152668 cites W2069209488 @default.
- W2750152668 cites W2087590712 @default.
- W2750152668 cites W2100403141 @default.
- W2750152668 cites W2100987884 @default.
- W2750152668 cites W2107563734 @default.
- W2750152668 cites W2120475208 @default.
- W2750152668 cites W2122470810 @default.
- W2750152668 cites W2127306098 @default.
- W2750152668 cites W2139983718 @default.
- W2750152668 cites W2144304907 @default.
- W2750152668 cites W2146879621 @default.
- W2750152668 cites W2148121522 @default.
- W2750152668 cites W2149721706 @default.
- W2750152668 cites W2150029285 @default.
- W2750152668 cites W2151382649 @default.
- W2750152668 cites W2151604161 @default.
- W2750152668 cites W2152074842 @default.
- W2750152668 cites W2155927283 @default.
- W2750152668 cites W2163286960 @default.
- W2750152668 cites W2401855953 @default.
- W2750152668 cites W2499002200 @default.
- W2750152668 cites W2499226730 @default.
- W2750152668 cites W2524816779 @default.
- W2750152668 cites W2531611812 @default.
- W2750152668 cites W2601522716 @default.
- W2750152668 cites W2745453384 @default.
- W2750152668 cites W3122455945 @default.
- W2750152668 cites W3140349921 @default.
- W2750152668 cites W3141722509 @default.
- W2750152668 cites W3145648774 @default.
- W2750152668 cites W3146095361 @default.
- W2750152668 cites W3147795216 @default.
- W2750152668 cites W3148687029 @default.
- W2750152668 cites W3149163106 @default.
- W2750152668 cites W3150130873 @default.
- W2750152668 cites W3150322979 @default.
- W2750152668 cites W3150596362 @default.
- W2750152668 cites W3150892736 @default.
- W2750152668 cites W3151279147 @default.
- W2750152668 cites W315176923 @default.
- W2750152668 cites W4211049957 @default.
- W2750152668 cites W4212920552 @default.
- W2750152668 cites W4231281053 @default.
- W2750152668 cites W4232906554 @default.
- W2750152668 cites W4234074216 @default.
- W2750152668 cites W4234792037 @default.
- W2750152668 cites W4234925047 @default.
- W2750152668 cites W4236540157 @default.
- W2750152668 cites W4237029372 @default.
- W2750152668 cites W4238200590 @default.
- W2750152668 cites W4238731775 @default.
- W2750152668 cites W4240074275 @default.
- W2750152668 cites W4240078139 @default.
- W2750152668 cites W4240549834 @default.
- W2750152668 cites W4243243777 @default.
- W2750152668 cites W4244046736 @default.
- W2750152668 cites W4244413997 @default.
- W2750152668 cites W4244650958 @default.
- W2750152668 cites W4245128675 @default.
- W2750152668 cites W4249113853 @default.
- W2750152668 cites W4250410652 @default.
- W2750152668 cites W4250981167 @default.
- W2750152668 cites W4254049438 @default.
- W2750152668 cites W4254348556 @default.
- W2750152668 cites W4255543940 @default.
- W2750152668 cites W585593720 @default.
- W2750152668 cites W600148761 @default.
- W2750152668 doi "https://doi.org/10.1007/978-3-319-64182-9_10" @default.