Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750368681> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2750368681 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2017A hybrid-Galerkin finite-element method for seismic wave propagation in fractured mediaAuthors: Janaki VamarajuMrinal SenMary F. WheelerJonas De BasabeJanaki VamarajuUniversity of Texas–AustinSearch for more papers by this author, Mrinal SenUniversity of Texas–AustinSearch for more papers by this author, Mary F. WheelerUniversity of Texas–AustinSearch for more papers by this author, and Jonas De BasabeCICESESearch for more papers by this authorhttps://doi.org/10.1190/segam2017-17683820.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract The discontinuous Galerkin Finite Element Method (DGM) is a promising approach for modeling wave propagation in fractured media. It allows for discontinuities in the displacement field to simulate fractures or faults in a model. The approach is based on the interior-penalty formulation of DGM, and the fractures are simulated using the linear-slip model, which is incorporated into the weak formulation. On the other hand, the Spectral Element Method (SEM) can be used to simulate elastic wave propagation in non-fractured media. SEM uses continuous basis functions which do not allow for discontinuities in the displacement field. Since the inception of DGM for seismic wave propagation in fractured media there has existed a question of whether DGM can be made computationally efficient. Here we propose a Hybrid Galerkin FEM (HGM) for elastic wave propagation in fractured media. HGM combines SEM and DGM to model seismic wave propagation in fractured media at reduced computational costs. We use DGM in areas containing fractures and SEM in regions where there are no fractures. The coupling between the domains at the interfaces is satisfied in the weak form through interface conditions. The degree of reduction in computation time greatly depends on the density of fractures in the medium. In this paper, we formulate and implement HGM for seismic wave propagation in fractured media. Using realistic numerical examples, we show that our proposed HGM outperforms a stand-alone DGM with reduced computation cost and memory requirement while maintaining the same level of accuracy. Presentation Date: Wednesday, September 27, 2017 Start Time: 2:40 PM Location: 381A Presentation Type: ORAL Keywords: elastic, modeling, wave propagation, finite element, fracturesPermalink: https://doi.org/10.1190/segam2017-17683820.1FiguresReferencesRelatedDetails SEG Technical Program Expanded Abstracts 2017ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2017 Pages: 6093 publication data© 2017 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 17 Aug 2017 CITATION INFORMATION Janaki Vamaraju, Mrinal Sen, Mary F. Wheeler, and Jonas De Basabe, (2017), A hybrid-Galerkin finite-element method for seismic wave propagation in fractured media, SEG Technical Program Expanded Abstracts : 4074-4079. https://doi.org/10.1190/segam2017-17683820.1 Plain-Language Summary Keywordselasticmodelingwave propagationfinite elementfracturesPDF DownloadLoading ..." @default.
- W2750368681 created "2017-08-31" @default.
- W2750368681 creator A5003120570 @default.
- W2750368681 creator A5023844439 @default.
- W2750368681 creator A5041533172 @default.
- W2750368681 creator A5090861294 @default.
- W2750368681 date "2017-08-17" @default.
- W2750368681 modified "2023-09-23" @default.
- W2750368681 title "A hybrid-Galerkin finite-element method for seismic wave propagation in fractured media" @default.
- W2750368681 cites W105774040 @default.
- W2750368681 cites W1488942459 @default.
- W2750368681 cites W1968183962 @default.
- W2750368681 cites W1990919744 @default.
- W2750368681 cites W2022702540 @default.
- W2750368681 cites W2028011226 @default.
- W2750368681 cites W2049467895 @default.
- W2750368681 cites W2074763849 @default.
- W2750368681 cites W2083855576 @default.
- W2750368681 cites W2102096503 @default.
- W2750368681 cites W2126979273 @default.
- W2750368681 cites W2145007271 @default.
- W2750368681 cites W2148631859 @default.
- W2750368681 cites W2170215184 @default.
- W2750368681 cites W222841820 @default.
- W2750368681 cites W2310513352 @default.
- W2750368681 cites W2417983942 @default.
- W2750368681 cites W4247766929 @default.
- W2750368681 cites W4361794552 @default.
- W2750368681 doi "https://doi.org/10.1190/segam2017-17683820.1" @default.
- W2750368681 hasPublicationYear "2017" @default.
- W2750368681 type Work @default.
- W2750368681 sameAs 2750368681 @default.
- W2750368681 citedByCount "0" @default.
- W2750368681 crossrefType "proceedings-article" @default.
- W2750368681 hasAuthorship W2750368681A5003120570 @default.
- W2750368681 hasAuthorship W2750368681A5023844439 @default.
- W2750368681 hasAuthorship W2750368681A5041533172 @default.
- W2750368681 hasAuthorship W2750368681A5090861294 @default.
- W2750368681 hasConcept C107551265 @default.
- W2750368681 hasConcept C120665830 @default.
- W2750368681 hasConcept C121332964 @default.
- W2750368681 hasConcept C127313418 @default.
- W2750368681 hasConcept C127413603 @default.
- W2750368681 hasConcept C134306372 @default.
- W2750368681 hasConcept C135628077 @default.
- W2750368681 hasConcept C15627037 @default.
- W2750368681 hasConcept C15744967 @default.
- W2750368681 hasConcept C186899397 @default.
- W2750368681 hasConcept C195268267 @default.
- W2750368681 hasConcept C29660869 @default.
- W2750368681 hasConcept C33923547 @default.
- W2750368681 hasConcept C44886760 @default.
- W2750368681 hasConcept C542102704 @default.
- W2750368681 hasConcept C66938386 @default.
- W2750368681 hasConcept C92244383 @default.
- W2750368681 hasConcept C97355855 @default.
- W2750368681 hasConceptScore W2750368681C107551265 @default.
- W2750368681 hasConceptScore W2750368681C120665830 @default.
- W2750368681 hasConceptScore W2750368681C121332964 @default.
- W2750368681 hasConceptScore W2750368681C127313418 @default.
- W2750368681 hasConceptScore W2750368681C127413603 @default.
- W2750368681 hasConceptScore W2750368681C134306372 @default.
- W2750368681 hasConceptScore W2750368681C135628077 @default.
- W2750368681 hasConceptScore W2750368681C15627037 @default.
- W2750368681 hasConceptScore W2750368681C15744967 @default.
- W2750368681 hasConceptScore W2750368681C186899397 @default.
- W2750368681 hasConceptScore W2750368681C195268267 @default.
- W2750368681 hasConceptScore W2750368681C29660869 @default.
- W2750368681 hasConceptScore W2750368681C33923547 @default.
- W2750368681 hasConceptScore W2750368681C44886760 @default.
- W2750368681 hasConceptScore W2750368681C542102704 @default.
- W2750368681 hasConceptScore W2750368681C66938386 @default.
- W2750368681 hasConceptScore W2750368681C92244383 @default.
- W2750368681 hasConceptScore W2750368681C97355855 @default.
- W2750368681 hasLocation W27503686811 @default.
- W2750368681 hasOpenAccess W2750368681 @default.
- W2750368681 hasPrimaryLocation W27503686811 @default.
- W2750368681 hasRelatedWork W1523800659 @default.
- W2750368681 hasRelatedWork W2076248741 @default.
- W2750368681 hasRelatedWork W2178692287 @default.
- W2750368681 hasRelatedWork W2368688031 @default.
- W2750368681 hasRelatedWork W2613898712 @default.
- W2750368681 hasRelatedWork W2751907972 @default.
- W2750368681 hasRelatedWork W2894770991 @default.
- W2750368681 hasRelatedWork W2939824001 @default.
- W2750368681 hasRelatedWork W3022360287 @default.
- W2750368681 hasRelatedWork W4200009940 @default.
- W2750368681 isParatext "false" @default.
- W2750368681 isRetracted "false" @default.
- W2750368681 magId "2750368681" @default.
- W2750368681 workType "article" @default.