Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750378903> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2750378903 endingPage "1815" @default.
- W2750378903 startingPage "1787" @default.
- W2750378903 abstract "Multi-label learning has become a significant learning paradigm in the past few years due to its broad application scenarios and the ever-increasing number of techniques developed by researchers in this area. Among existing state-of-the-art works, generative statistical models are characterized by their good generalization ability and robustness on large number of labels through learning a low-dimensional label embedding. However, one issue of this branch of models is that the number of dimensions needs to be fixed in advance, which is difficult and inappropriate in many real-world settings. In this paper, we propose a Bayesian nonparametric model to resolve this issue. More specifically, we extend a Gamma-negative binomial process to three levels in order to capture the label-instance-feature structure. Furthermore, a mixing strategy for Gamma processes is designed to account for the multiple labels of an instance. The mixed process also leads to a difficulty in model inference, so an efficient Gibbs sampling inference algorithm is then developed to resolve this difficulty. Experiments on several real-world datasets show the performance of the proposed model on multi-label learning tasks, comparing with three state-of-the-art models from the literature." @default.
- W2750378903 created "2017-08-31" @default.
- W2750378903 creator A5029498647 @default.
- W2750378903 creator A5037108851 @default.
- W2750378903 creator A5062192039 @default.
- W2750378903 creator A5067265615 @default.
- W2750378903 creator A5073709711 @default.
- W2750378903 date "2017-08-25" @default.
- W2750378903 modified "2023-09-23" @default.
- W2750378903 title "A Bayesian nonparametric model for multi-label learning" @default.
- W2750378903 cites W1969486090 @default.
- W2750378903 cites W1981573976 @default.
- W2750378903 cites W1981838369 @default.
- W2750378903 cites W1985741469 @default.
- W2750378903 cites W1987532879 @default.
- W2750378903 cites W2001082470 @default.
- W2750378903 cites W2015875947 @default.
- W2750378903 cites W2029517229 @default.
- W2750378903 cites W2034315836 @default.
- W2750378903 cites W2045631398 @default.
- W2750378903 cites W2050019102 @default.
- W2750378903 cites W2053571848 @default.
- W2750378903 cites W2063728452 @default.
- W2750378903 cites W2069078812 @default.
- W2750378903 cites W2069429561 @default.
- W2750378903 cites W2074909580 @default.
- W2750378903 cites W2085534751 @default.
- W2750378903 cites W2090630554 @default.
- W2750378903 cites W2103577799 @default.
- W2750378903 cites W2109957730 @default.
- W2750378903 cites W2114315281 @default.
- W2750378903 cites W2115870554 @default.
- W2750378903 cites W2135194391 @default.
- W2750378903 cites W2145827727 @default.
- W2750378903 cites W2150286230 @default.
- W2750378903 cites W2151989798 @default.
- W2750378903 cites W2157063432 @default.
- W2750378903 cites W2158266063 @default.
- W2750378903 cites W2963657126 @default.
- W2750378903 cites W4308951891 @default.
- W2750378903 doi "https://doi.org/10.1007/s10994-017-5638-4" @default.
- W2750378903 hasPublicationYear "2017" @default.
- W2750378903 type Work @default.
- W2750378903 sameAs 2750378903 @default.
- W2750378903 citedByCount "20" @default.
- W2750378903 countsByYear W27503789032018 @default.
- W2750378903 countsByYear W27503789032019 @default.
- W2750378903 countsByYear W27503789032020 @default.
- W2750378903 countsByYear W27503789032021 @default.
- W2750378903 countsByYear W27503789032023 @default.
- W2750378903 crossrefType "journal-article" @default.
- W2750378903 hasAuthorship W2750378903A5029498647 @default.
- W2750378903 hasAuthorship W2750378903A5037108851 @default.
- W2750378903 hasAuthorship W2750378903A5062192039 @default.
- W2750378903 hasAuthorship W2750378903A5067265615 @default.
- W2750378903 hasAuthorship W2750378903A5073709711 @default.
- W2750378903 hasBestOaLocation W27503789031 @default.
- W2750378903 hasConcept C102366305 @default.
- W2750378903 hasConcept C107673813 @default.
- W2750378903 hasConcept C119857082 @default.
- W2750378903 hasConcept C149782125 @default.
- W2750378903 hasConcept C154945302 @default.
- W2750378903 hasConcept C160234255 @default.
- W2750378903 hasConcept C33923547 @default.
- W2750378903 hasConcept C41008148 @default.
- W2750378903 hasConcept C71983512 @default.
- W2750378903 hasConceptScore W2750378903C102366305 @default.
- W2750378903 hasConceptScore W2750378903C107673813 @default.
- W2750378903 hasConceptScore W2750378903C119857082 @default.
- W2750378903 hasConceptScore W2750378903C149782125 @default.
- W2750378903 hasConceptScore W2750378903C154945302 @default.
- W2750378903 hasConceptScore W2750378903C160234255 @default.
- W2750378903 hasConceptScore W2750378903C33923547 @default.
- W2750378903 hasConceptScore W2750378903C41008148 @default.
- W2750378903 hasConceptScore W2750378903C71983512 @default.
- W2750378903 hasIssue "11" @default.
- W2750378903 hasLocation W27503789031 @default.
- W2750378903 hasLocation W27503789032 @default.
- W2750378903 hasOpenAccess W2750378903 @default.
- W2750378903 hasPrimaryLocation W27503789031 @default.
- W2750378903 hasRelatedWork W2110658950 @default.
- W2750378903 hasRelatedWork W2287484953 @default.
- W2750378903 hasRelatedWork W2511279186 @default.
- W2750378903 hasRelatedWork W2750378903 @default.
- W2750378903 hasRelatedWork W2754173053 @default.
- W2750378903 hasRelatedWork W2912351382 @default.
- W2750378903 hasRelatedWork W2963627453 @default.
- W2750378903 hasRelatedWork W3033035387 @default.
- W2750378903 hasRelatedWork W3034669169 @default.
- W2750378903 hasRelatedWork W96862169 @default.
- W2750378903 hasVolume "106" @default.
- W2750378903 isParatext "false" @default.
- W2750378903 isRetracted "false" @default.
- W2750378903 magId "2750378903" @default.
- W2750378903 workType "article" @default.