Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750517519> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2750517519 abstract "Doctoral Thesis / Dissertation from the year 2010 in the subject Computer Science - Applied, grade: none, - (University of Hyderabad, Hyderabad, Andhra Pradesh, India), course: Department of Computers and Information Sciences - Ph.D., language: English, comment: This thesis provides a very broad aspects of Data Mining applied for Customer Relationship Management. Very rare doctoral thesis are so well supported by empirical analysis, very few which I have seen, this is one of them. External Reviewer Comment. , abstract: Although Support Vector Machines have been used to develop highly accurate classification and regression models in various real-world problem domains, the most significant barrier is that SVM generates black box model that is difficult to understand. The procedure to convert these opaque models into transparent models is called rule extraction. This thesis investigates the task of extracting comprehensible models from trained SVMs, thereby alleviating this limitation. The primary contribution of the thesis is the proposal of various algorithms to overcome the significant limitations of SVM by taking a novel approach to the task of extracting comprehensible models. The basic contribution of the thesis are systematic review of literature on rule extraction from SVM, identifying gaps in the literature and proposing novel approaches for addressing the gaps. The contributions are grouped under three classes, decompositional, pedagogical and eclectic/hybrid approaches. Decompositional approach is closely intertwined with the internal workings of the SVM. Pedagogical approach uses SVM as an oracle to re-label training examples as well as artificially generated examples. In the eclectic/hybrid approach, a combination of these two methods is adopted. The thesis addresses various problems from the finance domain such as bankruptcy prediction in banks/firms, churn prediction in analytical CRM and Insurance fraud detection. Apart from this various benchmark dat" @default.
- W2750517519 created "2017-08-31" @default.
- W2750517519 creator A5005881274 @default.
- W2750517519 date "2013-09-02" @default.
- W2750517519 modified "2023-09-27" @default.
- W2750517519 title "Rule Extraction from Support Vector Machine" @default.
- W2750517519 cites W152751697 @default.
- W2750517519 cites W1535817324 @default.
- W2750517519 cites W1577970501 @default.
- W2750517519 cites W1594031697 @default.
- W2750517519 cites W181457951 @default.
- W2750517519 cites W1980899288 @default.
- W2750517519 cites W2035828715 @default.
- W2750517519 cites W2037465598 @default.
- W2750517519 cites W2040082158 @default.
- W2750517519 cites W2049487457 @default.
- W2750517519 cites W2063046703 @default.
- W2750517519 cites W2104046064 @default.
- W2750517519 cites W2111620756 @default.
- W2750517519 cites W2113882472 @default.
- W2750517519 cites W2125055259 @default.
- W2750517519 cites W2127136846 @default.
- W2750517519 cites W2131064753 @default.
- W2750517519 cites W2134682899 @default.
- W2750517519 cites W2134794978 @default.
- W2750517519 cites W2136000097 @default.
- W2750517519 cites W2146230369 @default.
- W2750517519 cites W2154142492 @default.
- W2750517519 cites W2171583938 @default.
- W2750517519 cites W2229641681 @default.
- W2750517519 cites W2479167044 @default.
- W2750517519 cites W3123427206 @default.
- W2750517519 hasPublicationYear "2013" @default.
- W2750517519 type Work @default.
- W2750517519 sameAs 2750517519 @default.
- W2750517519 citedByCount "1" @default.
- W2750517519 countsByYear W27505175192014 @default.
- W2750517519 crossrefType "book" @default.
- W2750517519 hasAuthorship W2750517519A5005881274 @default.
- W2750517519 hasConcept C115903868 @default.
- W2750517519 hasConcept C119857082 @default.
- W2750517519 hasConcept C12267149 @default.
- W2750517519 hasConcept C124101348 @default.
- W2750517519 hasConcept C127413603 @default.
- W2750517519 hasConcept C154945302 @default.
- W2750517519 hasConcept C201995342 @default.
- W2750517519 hasConcept C204321447 @default.
- W2750517519 hasConcept C2780451532 @default.
- W2750517519 hasConcept C41008148 @default.
- W2750517519 hasConcept C55166926 @default.
- W2750517519 hasConceptScore W2750517519C115903868 @default.
- W2750517519 hasConceptScore W2750517519C119857082 @default.
- W2750517519 hasConceptScore W2750517519C12267149 @default.
- W2750517519 hasConceptScore W2750517519C124101348 @default.
- W2750517519 hasConceptScore W2750517519C127413603 @default.
- W2750517519 hasConceptScore W2750517519C154945302 @default.
- W2750517519 hasConceptScore W2750517519C201995342 @default.
- W2750517519 hasConceptScore W2750517519C204321447 @default.
- W2750517519 hasConceptScore W2750517519C2780451532 @default.
- W2750517519 hasConceptScore W2750517519C41008148 @default.
- W2750517519 hasConceptScore W2750517519C55166926 @default.
- W2750517519 hasLocation W27505175191 @default.
- W2750517519 hasOpenAccess W2750517519 @default.
- W2750517519 hasPrimaryLocation W27505175191 @default.
- W2750517519 hasRelatedWork W133399480 @default.
- W2750517519 hasRelatedWork W1574325227 @default.
- W2750517519 hasRelatedWork W1698155719 @default.
- W2750517519 hasRelatedWork W2017881743 @default.
- W2750517519 hasRelatedWork W2117485107 @default.
- W2750517519 hasRelatedWork W2202773280 @default.
- W2750517519 hasRelatedWork W2251777082 @default.
- W2750517519 hasRelatedWork W2263643244 @default.
- W2750517519 hasRelatedWork W2413596673 @default.
- W2750517519 hasRelatedWork W2782709293 @default.
- W2750517519 hasRelatedWork W2909974357 @default.
- W2750517519 hasRelatedWork W2914594823 @default.
- W2750517519 hasRelatedWork W2947721353 @default.
- W2750517519 hasRelatedWork W2951041267 @default.
- W2750517519 hasRelatedWork W3043810141 @default.
- W2750517519 hasRelatedWork W3102505547 @default.
- W2750517519 hasRelatedWork W3168632001 @default.
- W2750517519 hasRelatedWork W3177082483 @default.
- W2750517519 hasRelatedWork W572368116 @default.
- W2750517519 hasRelatedWork W2799362914 @default.
- W2750517519 isParatext "false" @default.
- W2750517519 isRetracted "false" @default.
- W2750517519 magId "2750517519" @default.
- W2750517519 workType "book" @default.