Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750661811> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2750661811 endingPage "281" @default.
- W2750661811 startingPage "269" @default.
- W2750661811 abstract "Recently we complemented the raster image correlation spectroscopy (RICS) method of analysing raster images via estimation of the image correlation function with the method single particle raster image analysis (SPRIA). In SPRIA, individual particles are identified and the diffusion coefficient of each particle is estimated by a maximum likelihood method. In this paper, we extend the SPRIA method to analyse mixtures of particles with a finite set of diffusion coefficients in a homogeneous medium. In examples with simulated and experimental data with two and three different diffusion coefficients, we show that SPRIA gives accurate estimates of the diffusion coefficients and their proportions. A simple technique for finding the number of different diffusion coefficients is also suggested. Further, we study the use of RICS for mixtures with two different diffusion coefficents and investigate, by plotting level curves of the correlation function, how large the quotient between diffusion coefficients needs to be in order to allow discrimination between models with one and two diffusion coefficients. We also describe a minor correction (compared to published papers) of the RICS autocorrelation function. Diffusion is a key mass transport mechanism for small particles. Efficient methods for estimating diffusion coefficients are crucial for analysis of microstructures, for example in soft biomaterials. The sample of interest may consist of a mixture of particles with different diffusion coefficients. Here, we extend a method called Single Particle Raster Image Analysis (SPRIA) to account for particle mixtures and estimation of the diffusion coefficients of the mixture components. SPRIA combines elements of classical single particle tracking methods with utilizing the raster scan with which images obtained by using a confocal laser scanning microscope. In particular, single particles are identified and their motion estimated by following their center of mass. Thus, an estimate of the diffusion coefficient will be obtained for each particle. Then, we analyse the distribution of the estimated diffusion coefficients of the population of particles, which allows us to extract information about the diffusion coefficients of the underlying components in the mixture. On both simulated and experimental data with mixtures consisting of two and three components with different diffusion coefficients, SPRIA provides accurate estimates and, with a simple criterion, the correct number of mixture components is selected in most cases. Table S8: N is the observed number of particles, D is the expected diffusion coefficient, is the estimated diffusion coefficient as presented in (Longfils et al., 2017), and is the estimated diffusion coefficient with the method suggested herein. The values after the ± signs are standard errors computed by bootstrapping. Table S9: Results for a mixtures of 175 nm, 500 nm, and 1000 nm beads with different proportions. Sizes indicates which beads have been mixed in each row and in parentheses we report the expected diffusion coefficients according to Stokes-Einstein relation. is the expected proportion of the larger bead species in the mixture (=). and are the two estimated diffusion coefficients for the mixture model, and is the diffusion estimated for the single diffusion coefficient model. is the estimated proportion β1. Table S10: Results for single populations of beads. Sizes indicates which beads have been considered in each row and in parentheses we report the expected diffusion coefficients according to Stokes-Einstein. is the estimated diffusion coefficient by SPRIA with one component, while and are the two estimates for a mixture with two diffusing species. is the estimated proportion of particles with diffusion coefficient . Comp15 is the selected number of components with a 15% threshold on the minimum proportion and finally, is the estimated diffusion coefficient by RICS. The values after the ± signs are standard errors computed by bootstrap. Table S11: Results for simulated non-mixed beads. is the true diffusion coefficient used for the simulation, is the estimated diffusion coefficient by SPRIA with one component, while and are the two estimates for a mixture with two diffusing species, and is the estimated proportion of particles with diffusion coefficient . Comp15 is the selected number of components with a 15% threshold on the minimum proportion and finally is the estimated diffusion coefficient by RICS. The values after the ± signs are standard errors computed by bootstrapping. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article." @default.
- W2750661811 created "2017-09-15" @default.
- W2750661811 creator A5013168451 @default.
- W2750661811 creator A5019785606 @default.
- W2750661811 creator A5024353685 @default.
- W2750661811 creator A5033159302 @default.
- W2750661811 creator A5041348393 @default.
- W2750661811 creator A5044452675 @default.
- W2750661811 creator A5064284795 @default.
- W2750661811 date "2017-09-01" @default.
- W2750661811 modified "2023-09-23" @default.
- W2750661811 title "Single particle raster image analysis of diffusion for particle mixtures" @default.
- W2750661811 cites W1982865896 @default.
- W2750661811 cites W2010181298 @default.
- W2750661811 cites W2019841176 @default.
- W2750661811 cites W2037403230 @default.
- W2750661811 cites W2091655993 @default.
- W2750661811 cites W2116408247 @default.
- W2750661811 cites W2167777640 @default.
- W2750661811 cites W2228839319 @default.
- W2750661811 cites W2310306303 @default.
- W2750661811 cites W2328634331 @default.
- W2750661811 cites W2535198309 @default.
- W2750661811 cites W2560098544 @default.
- W2750661811 cites W3106889297 @default.
- W2750661811 doi "https://doi.org/10.1111/jmi.12625" @default.
- W2750661811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28862754" @default.
- W2750661811 hasPublicationYear "2017" @default.
- W2750661811 type Work @default.
- W2750661811 sameAs 2750661811 @default.
- W2750661811 citedByCount "0" @default.
- W2750661811 crossrefType "journal-article" @default.
- W2750661811 hasAuthorship W2750661811A5013168451 @default.
- W2750661811 hasAuthorship W2750661811A5019785606 @default.
- W2750661811 hasAuthorship W2750661811A5024353685 @default.
- W2750661811 hasAuthorship W2750661811A5033159302 @default.
- W2750661811 hasAuthorship W2750661811A5041348393 @default.
- W2750661811 hasAuthorship W2750661811A5044452675 @default.
- W2750661811 hasAuthorship W2750661811A5064284795 @default.
- W2750661811 hasBestOaLocation W27506618112 @default.
- W2750661811 hasConcept C105795698 @default.
- W2750661811 hasConcept C111368507 @default.
- W2750661811 hasConcept C121332964 @default.
- W2750661811 hasConcept C121864883 @default.
- W2750661811 hasConcept C127313418 @default.
- W2750661811 hasConcept C145406643 @default.
- W2750661811 hasConcept C154945302 @default.
- W2750661811 hasConcept C159985019 @default.
- W2750661811 hasConcept C181844469 @default.
- W2750661811 hasConcept C192562407 @default.
- W2750661811 hasConcept C204323151 @default.
- W2750661811 hasConcept C2778517922 @default.
- W2750661811 hasConcept C33923547 @default.
- W2750661811 hasConcept C41008148 @default.
- W2750661811 hasConcept C5297727 @default.
- W2750661811 hasConcept C69357855 @default.
- W2750661811 hasConcept C97355855 @default.
- W2750661811 hasConceptScore W2750661811C105795698 @default.
- W2750661811 hasConceptScore W2750661811C111368507 @default.
- W2750661811 hasConceptScore W2750661811C121332964 @default.
- W2750661811 hasConceptScore W2750661811C121864883 @default.
- W2750661811 hasConceptScore W2750661811C127313418 @default.
- W2750661811 hasConceptScore W2750661811C145406643 @default.
- W2750661811 hasConceptScore W2750661811C154945302 @default.
- W2750661811 hasConceptScore W2750661811C159985019 @default.
- W2750661811 hasConceptScore W2750661811C181844469 @default.
- W2750661811 hasConceptScore W2750661811C192562407 @default.
- W2750661811 hasConceptScore W2750661811C204323151 @default.
- W2750661811 hasConceptScore W2750661811C2778517922 @default.
- W2750661811 hasConceptScore W2750661811C33923547 @default.
- W2750661811 hasConceptScore W2750661811C41008148 @default.
- W2750661811 hasConceptScore W2750661811C5297727 @default.
- W2750661811 hasConceptScore W2750661811C69357855 @default.
- W2750661811 hasConceptScore W2750661811C97355855 @default.
- W2750661811 hasFunder F4320320940 @default.
- W2750661811 hasIssue "3" @default.
- W2750661811 hasLocation W27506618111 @default.
- W2750661811 hasLocation W27506618112 @default.
- W2750661811 hasLocation W27506618113 @default.
- W2750661811 hasOpenAccess W2750661811 @default.
- W2750661811 hasPrimaryLocation W27506618111 @default.
- W2750661811 hasRelatedWork W1571205638 @default.
- W2750661811 hasRelatedWork W1618612856 @default.
- W2750661811 hasRelatedWork W1965993047 @default.
- W2750661811 hasRelatedWork W2032986853 @default.
- W2750661811 hasRelatedWork W2040764326 @default.
- W2750661811 hasRelatedWork W2144350804 @default.
- W2750661811 hasRelatedWork W2156798520 @default.
- W2750661811 hasRelatedWork W2750661811 @default.
- W2750661811 hasRelatedWork W2963233739 @default.
- W2750661811 hasRelatedWork W3125970990 @default.
- W2750661811 hasVolume "269" @default.
- W2750661811 isParatext "false" @default.
- W2750661811 isRetracted "false" @default.
- W2750661811 magId "2750661811" @default.
- W2750661811 workType "article" @default.