Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750723786> ?p ?o ?g. }
- W2750723786 endingPage "38" @default.
- W2750723786 startingPage "32" @default.
- W2750723786 abstract "Interfacial phenomenon between CO2 and aqueous phases affects the distribution and behavior of fluids in porous media, and also plays a major role in determining the usefulness of enhanced oil recovery methods particularly CO2 flooding. Therefore, in this study, the interfacial tension (IFT) between CO2 and brine is predicted as a function of the temperature, pressure, bivalent cation molality, monovalent cation molality as well as methane and nitrogen mole fractions using three robust modeling strategies called gene expression programming (GEP), decision tree (DT), and least squares support vector machine (LSSVM). Furthermore, the outcomes obtained by the methods mentioned above have been assessed by comparing with the reported estimates of artificial neural network (ANN) in the literature. Amongst the all models proposed in the current study, it is demonstrated that the developed regression DT tool and the available ANN in literature are the most precise models which could be applied properly as the reliable methods for the characterization and determination of IFT between CO2 and brine, and also for geological CO2 storage." @default.
- W2750723786 created "2017-09-15" @default.
- W2750723786 creator A5011280704 @default.
- W2750723786 creator A5011806403 @default.
- W2750723786 creator A5024837575 @default.
- W2750723786 creator A5037786093 @default.
- W2750723786 creator A5067242500 @default.
- W2750723786 date "2017-11-01" @default.
- W2750723786 modified "2023-09-27" @default.
- W2750723786 title "Characterizing the CO2-brine interfacial tension (IFT) using robust modeling approaches: A comparative study" @default.
- W2750723786 cites W1465105198 @default.
- W2750723786 cites W1596717185 @default.
- W2750723786 cites W1964703267 @default.
- W2750723786 cites W1964990053 @default.
- W2750723786 cites W1966828438 @default.
- W2750723786 cites W1967387730 @default.
- W2750723786 cites W1968229119 @default.
- W2750723786 cites W1971836998 @default.
- W2750723786 cites W1972953764 @default.
- W2750723786 cites W1982755335 @default.
- W2750723786 cites W1986810629 @default.
- W2750723786 cites W1987642477 @default.
- W2750723786 cites W1990876654 @default.
- W2750723786 cites W1990995949 @default.
- W2750723786 cites W2007674806 @default.
- W2750723786 cites W2009367142 @default.
- W2750723786 cites W2010197352 @default.
- W2750723786 cites W2020979646 @default.
- W2750723786 cites W2032245474 @default.
- W2750723786 cites W2033308452 @default.
- W2750723786 cites W2038743088 @default.
- W2750723786 cites W2043944628 @default.
- W2750723786 cites W2062988919 @default.
- W2750723786 cites W2069514634 @default.
- W2750723786 cites W2072444502 @default.
- W2750723786 cites W2072471629 @default.
- W2750723786 cites W2075977490 @default.
- W2750723786 cites W2078231961 @default.
- W2750723786 cites W2084961434 @default.
- W2750723786 cites W2086329353 @default.
- W2750723786 cites W2316029204 @default.
- W2750723786 cites W2323426339 @default.
- W2750723786 cites W2327379063 @default.
- W2750723786 cites W2338017645 @default.
- W2750723786 cites W2559402649 @default.
- W2750723786 cites W2593818290 @default.
- W2750723786 cites W2748093634 @default.
- W2750723786 cites W2749976531 @default.
- W2750723786 doi "https://doi.org/10.1016/j.molliq.2017.09.010" @default.
- W2750723786 hasPublicationYear "2017" @default.
- W2750723786 type Work @default.
- W2750723786 sameAs 2750723786 @default.
- W2750723786 citedByCount "42" @default.
- W2750723786 countsByYear W27507237862017 @default.
- W2750723786 countsByYear W27507237862018 @default.
- W2750723786 countsByYear W27507237862019 @default.
- W2750723786 countsByYear W27507237862020 @default.
- W2750723786 countsByYear W27507237862021 @default.
- W2750723786 countsByYear W27507237862022 @default.
- W2750723786 countsByYear W27507237862023 @default.
- W2750723786 crossrefType "journal-article" @default.
- W2750723786 hasAuthorship W2750723786A5011280704 @default.
- W2750723786 hasAuthorship W2750723786A5011806403 @default.
- W2750723786 hasAuthorship W2750723786A5024837575 @default.
- W2750723786 hasAuthorship W2750723786A5037786093 @default.
- W2750723786 hasAuthorship W2750723786A5067242500 @default.
- W2750723786 hasConcept C119857082 @default.
- W2750723786 hasConcept C121332964 @default.
- W2750723786 hasConcept C12267149 @default.
- W2750723786 hasConcept C127313418 @default.
- W2750723786 hasConcept C145828037 @default.
- W2750723786 hasConcept C16946580 @default.
- W2750723786 hasConcept C178790620 @default.
- W2750723786 hasConcept C184651966 @default.
- W2750723786 hasConcept C185592680 @default.
- W2750723786 hasConcept C186060115 @default.
- W2750723786 hasConcept C2776957854 @default.
- W2750723786 hasConcept C41008148 @default.
- W2750723786 hasConcept C50644808 @default.
- W2750723786 hasConcept C6980683 @default.
- W2750723786 hasConcept C78762247 @default.
- W2750723786 hasConcept C86803240 @default.
- W2750723786 hasConcept C8892853 @default.
- W2750723786 hasConcept C97355855 @default.
- W2750723786 hasConceptScore W2750723786C119857082 @default.
- W2750723786 hasConceptScore W2750723786C121332964 @default.
- W2750723786 hasConceptScore W2750723786C12267149 @default.
- W2750723786 hasConceptScore W2750723786C127313418 @default.
- W2750723786 hasConceptScore W2750723786C145828037 @default.
- W2750723786 hasConceptScore W2750723786C16946580 @default.
- W2750723786 hasConceptScore W2750723786C178790620 @default.
- W2750723786 hasConceptScore W2750723786C184651966 @default.
- W2750723786 hasConceptScore W2750723786C185592680 @default.
- W2750723786 hasConceptScore W2750723786C186060115 @default.
- W2750723786 hasConceptScore W2750723786C2776957854 @default.
- W2750723786 hasConceptScore W2750723786C41008148 @default.
- W2750723786 hasConceptScore W2750723786C50644808 @default.
- W2750723786 hasConceptScore W2750723786C6980683 @default.