Matches in SemOpenAlex for { <https://semopenalex.org/work/W2750747145> ?p ?o ?g. }
- W2750747145 endingPage "970" @default.
- W2750747145 startingPage "959" @default.
- W2750747145 abstract "A full methodology of short-term traffic prediction is proposed for urban road traffic network via Artificial Neural Network (ANN). The goal of the forecasting is to provide speed estimation forward by 5, 15 and 30 min. Unlike similar research results in this field, the investigated method aims to predict traffic speed for signalized urban road links and not for highway or arterial roads. The methodology contains an efficient feature selection algorithm in order to determine the appropriate input parameters required for neural network training. As another contribution of the paper, a built-in incomplete data handling is provided as input data (originating from traffic sensors or Floating Car Data (FCD)) might be absent or biased in practice. Therefore, input data handling can assure a robust operation of speed forecasting also in case of missing data. The proposed algorithm is trained, tested and analysed in a test network built-up in a microscopic traffic simulator by using daily course of real-world traffic." @default.
- W2750747145 created "2017-09-15" @default.
- W2750747145 creator A5050690094 @default.
- W2750747145 creator A5055611722 @default.
- W2750747145 creator A5059315217 @default.
- W2750747145 creator A5082838661 @default.
- W2750747145 creator A5048530693 @default.
- W2750747145 date "2018-12-05" @default.
- W2750747145 modified "2023-10-17" @default.
- W2750747145 title "PATTERN RECOGNITION BASED SPEED FORECASTING METHODOLOGY FOR URBAN TRAFFIC NETWORK" @default.
- W2750747145 cites W1509749701 @default.
- W2750747145 cites W1514415280 @default.
- W2750747145 cites W1577927906 @default.
- W2750747145 cites W1874829908 @default.
- W2750747145 cites W1967681834 @default.
- W2750747145 cites W1977405947 @default.
- W2750747145 cites W1995341919 @default.
- W2750747145 cites W1996457660 @default.
- W2750747145 cites W2005026102 @default.
- W2750747145 cites W2008400000 @default.
- W2750747145 cites W2010389255 @default.
- W2750747145 cites W2012051283 @default.
- W2750747145 cites W2015289241 @default.
- W2750747145 cites W2024093471 @default.
- W2750747145 cites W2024558842 @default.
- W2750747145 cites W2040297119 @default.
- W2750747145 cites W2040355845 @default.
- W2750747145 cites W2041419171 @default.
- W2750747145 cites W2049777773 @default.
- W2750747145 cites W2049952439 @default.
- W2750747145 cites W2059128538 @default.
- W2750747145 cites W2073322038 @default.
- W2750747145 cites W2074108366 @default.
- W2750747145 cites W2081049170 @default.
- W2750747145 cites W2082533141 @default.
- W2750747145 cites W2086482048 @default.
- W2750747145 cites W2090192376 @default.
- W2750747145 cites W2107921998 @default.
- W2750747145 cites W2111210494 @default.
- W2750747145 cites W2117284672 @default.
- W2750747145 cites W2131516551 @default.
- W2750747145 cites W2149721642 @default.
- W2750747145 cites W2154053567 @default.
- W2750747145 cites W2169439425 @default.
- W2750747145 cites W2273402484 @default.
- W2750747145 cites W4230612334 @default.
- W2750747145 doi "https://doi.org/10.3846/16484142.2017.1352027" @default.
- W2750747145 hasPublicationYear "2018" @default.
- W2750747145 type Work @default.
- W2750747145 sameAs 2750747145 @default.
- W2750747145 citedByCount "4" @default.
- W2750747145 countsByYear W27507471452018 @default.
- W2750747145 countsByYear W27507471452020 @default.
- W2750747145 crossrefType "journal-article" @default.
- W2750747145 hasAuthorship W2750747145A5048530693 @default.
- W2750747145 hasAuthorship W2750747145A5050690094 @default.
- W2750747145 hasAuthorship W2750747145A5055611722 @default.
- W2750747145 hasAuthorship W2750747145A5059315217 @default.
- W2750747145 hasAuthorship W2750747145A5082838661 @default.
- W2750747145 hasBestOaLocation W27507471451 @default.
- W2750747145 hasConcept C124101348 @default.
- W2750747145 hasConcept C127413603 @default.
- W2750747145 hasConcept C154945302 @default.
- W2750747145 hasConcept C202444582 @default.
- W2750747145 hasConcept C22212356 @default.
- W2750747145 hasConcept C2779888511 @default.
- W2750747145 hasConcept C2993660032 @default.
- W2750747145 hasConcept C33923547 @default.
- W2750747145 hasConcept C41008148 @default.
- W2750747145 hasConcept C50644808 @default.
- W2750747145 hasConcept C64093975 @default.
- W2750747145 hasConcept C9652623 @default.
- W2750747145 hasConceptScore W2750747145C124101348 @default.
- W2750747145 hasConceptScore W2750747145C127413603 @default.
- W2750747145 hasConceptScore W2750747145C154945302 @default.
- W2750747145 hasConceptScore W2750747145C202444582 @default.
- W2750747145 hasConceptScore W2750747145C22212356 @default.
- W2750747145 hasConceptScore W2750747145C2779888511 @default.
- W2750747145 hasConceptScore W2750747145C2993660032 @default.
- W2750747145 hasConceptScore W2750747145C33923547 @default.
- W2750747145 hasConceptScore W2750747145C41008148 @default.
- W2750747145 hasConceptScore W2750747145C50644808 @default.
- W2750747145 hasConceptScore W2750747145C64093975 @default.
- W2750747145 hasConceptScore W2750747145C9652623 @default.
- W2750747145 hasIssue "4" @default.
- W2750747145 hasLocation W27507471451 @default.
- W2750747145 hasLocation W27507471452 @default.
- W2750747145 hasLocation W27507471453 @default.
- W2750747145 hasLocation W27507471454 @default.
- W2750747145 hasOpenAccess W2750747145 @default.
- W2750747145 hasPrimaryLocation W27507471451 @default.
- W2750747145 hasRelatedWork W1576643920 @default.
- W2750747145 hasRelatedWork W2284738174 @default.
- W2750747145 hasRelatedWork W2367836910 @default.
- W2750747145 hasRelatedWork W2370594732 @default.
- W2750747145 hasRelatedWork W2586661917 @default.
- W2750747145 hasRelatedWork W627671127 @default.
- W2750747145 hasRelatedWork W642055450 @default.