Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751173393> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2751173393 endingPage "2619" @default.
- W2751173393 startingPage "2600" @default.
- W2751173393 abstract "ABSTRACT No. 2017-233 The broad adoption of remotely sensed data and derivative products from satellite and aerial platforms available to describe the distribution of spilled oil on the water surface was an important factor during Deepwater Horizon (DWH) oil spill both for tactical response and damage assessment. The availability and utility of these data in describing on-water oil distribution provide strong temptation to make estimates about on-shoreline oil distribution. The mechanisms by which floating oil interact with the shoreline, however, are extremely complex, heterogeneous at fine spatial scales, and generally not well described or quantified beyond broad conceptual or spill-specific empirical models. In short, oil on water does not necessarily lead to oil on adjacent shorelines. We combine data derived from NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) using a variety of satellite platforms of opportunity describing the remotely-sensed, daily composite anomaly polygons representing oil on water over multiple months with ground observations made in the field, collocated in time and space extracted from a newly compiled database of ground survey data (SCAT, NRDA and others) from the northwestern Gulf of Mexico. Because this new compiled dataset is very large (100,000s of observations) and spans a wide range of habitats, geography, and time, it is particularly suitable for inference and predictive modeling. We use these combined datasets to make inference about the relative influence on shoreline oiling probability and loading of distance from on-water oil observation via multiple distance metrics, shoreline morphology, water levels and ranges, wind direction and speed, wave energy, shoreline aspect and geometry. We also construct predictive models using machine-learning modeling methods to make predictions about shoreline oiling probability given observed distributions of on-water oil. The importance of this work is three part: firstly, the relationships between these parameters can assist hind-cast modeling of shoreline oiling probability for the Deepwater Horizon oil spill. Secondly, these data and models can permit similar modeling for future spills. Lastly, we propose that this dataset serve as a nucleus that can be expanded using data from subsequent or future spills to allow iteratively improvements in shoreline oil probability modeling using remotely sensed data, as well as an improved understanding of oil-shoreline interactions more generally." @default.
- W2751173393 created "2017-09-15" @default.
- W2751173393 creator A5011041320 @default.
- W2751173393 creator A5059480250 @default.
- W2751173393 creator A5073425478 @default.
- W2751173393 date "2017-05-01" @default.
- W2751173393 modified "2023-09-25" @default.
- W2751173393 title "Remotely-Sensed Oil and Shoreline Interaction Modeling" @default.
- W2751173393 cites W1510361429 @default.
- W2751173393 cites W1514741151 @default.
- W2751173393 cites W1618905105 @default.
- W2751173393 cites W1678356000 @default.
- W2751173393 cites W1968331856 @default.
- W2751173393 cites W2017336816 @default.
- W2751173393 cites W2018170211 @default.
- W2751173393 cites W2024046085 @default.
- W2751173393 cites W2083536977 @default.
- W2751173393 cites W2090183955 @default.
- W2751173393 cites W2098824882 @default.
- W2751173393 cites W2117602483 @default.
- W2751173393 cites W2125847307 @default.
- W2751173393 cites W2127993657 @default.
- W2751173393 cites W2135695572 @default.
- W2751173393 cites W2145126338 @default.
- W2751173393 cites W2154452799 @default.
- W2751173393 cites W2157817668 @default.
- W2751173393 cites W2331659823 @default.
- W2751173393 cites W2338867775 @default.
- W2751173393 cites W2582743722 @default.
- W2751173393 cites W3216546183 @default.
- W2751173393 doi "https://doi.org/10.7901/2169-3358-2017.1.2600" @default.
- W2751173393 hasPublicationYear "2017" @default.
- W2751173393 type Work @default.
- W2751173393 sameAs 2751173393 @default.
- W2751173393 citedByCount "0" @default.
- W2751173393 crossrefType "journal-article" @default.
- W2751173393 hasAuthorship W2751173393A5011041320 @default.
- W2751173393 hasAuthorship W2751173393A5059480250 @default.
- W2751173393 hasAuthorship W2751173393A5073425478 @default.
- W2751173393 hasConcept C111368507 @default.
- W2751173393 hasConcept C119857082 @default.
- W2751173393 hasConcept C127313418 @default.
- W2751173393 hasConcept C127413603 @default.
- W2751173393 hasConcept C146849305 @default.
- W2751173393 hasConcept C146978453 @default.
- W2751173393 hasConcept C152382732 @default.
- W2751173393 hasConcept C187320778 @default.
- W2751173393 hasConcept C19269812 @default.
- W2751173393 hasConcept C2778102629 @default.
- W2751173393 hasConcept C2985668151 @default.
- W2751173393 hasConcept C39432304 @default.
- W2751173393 hasConcept C41008148 @default.
- W2751173393 hasConcept C62649853 @default.
- W2751173393 hasConcept C76886044 @default.
- W2751173393 hasConcept C87717796 @default.
- W2751173393 hasConceptScore W2751173393C111368507 @default.
- W2751173393 hasConceptScore W2751173393C119857082 @default.
- W2751173393 hasConceptScore W2751173393C127313418 @default.
- W2751173393 hasConceptScore W2751173393C127413603 @default.
- W2751173393 hasConceptScore W2751173393C146849305 @default.
- W2751173393 hasConceptScore W2751173393C146978453 @default.
- W2751173393 hasConceptScore W2751173393C152382732 @default.
- W2751173393 hasConceptScore W2751173393C187320778 @default.
- W2751173393 hasConceptScore W2751173393C19269812 @default.
- W2751173393 hasConceptScore W2751173393C2778102629 @default.
- W2751173393 hasConceptScore W2751173393C2985668151 @default.
- W2751173393 hasConceptScore W2751173393C39432304 @default.
- W2751173393 hasConceptScore W2751173393C41008148 @default.
- W2751173393 hasConceptScore W2751173393C62649853 @default.
- W2751173393 hasConceptScore W2751173393C76886044 @default.
- W2751173393 hasConceptScore W2751173393C87717796 @default.
- W2751173393 hasIssue "1" @default.
- W2751173393 hasLocation W27511733931 @default.
- W2751173393 hasOpenAccess W2751173393 @default.
- W2751173393 hasPrimaryLocation W27511733931 @default.
- W2751173393 hasRelatedWork W1537986011 @default.
- W2751173393 hasRelatedWork W2027926900 @default.
- W2751173393 hasRelatedWork W2054087368 @default.
- W2751173393 hasRelatedWork W2057962381 @default.
- W2751173393 hasRelatedWork W2085322521 @default.
- W2751173393 hasRelatedWork W2220204982 @default.
- W2751173393 hasRelatedWork W2315013538 @default.
- W2751173393 hasRelatedWork W3103036146 @default.
- W2751173393 hasRelatedWork W3199945486 @default.
- W2751173393 hasRelatedWork W2116625370 @default.
- W2751173393 hasVolume "2017" @default.
- W2751173393 isParatext "false" @default.
- W2751173393 isRetracted "false" @default.
- W2751173393 magId "2751173393" @default.
- W2751173393 workType "article" @default.