Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751238863> ?p ?o ?g. }
- W2751238863 abstract "For applications as varied as Bayesian neural networks, determinantal point processes, elliptical graphical models, and kernel learning for Gaussian processes (GPs), one must compute a log determinant of an $n times n$ positive definite matrix, and its derivatives - leading to prohibitive $mathcal{O}(n^3)$ computations. We propose novel $mathcal{O}(n)$ approaches to estimating these quantities from only fast matrix vector multiplications (MVMs). These stochastic approximations are based on Chebyshev, Lanczos, and surrogate models, and converge quickly even for kernel matrices that have challenging spectra. We leverage these approximations to develop a scalable Gaussian process approach to kernel learning. We find that Lanczos is generally superior to Chebyshev for kernel learning, and that a surrogate approach can be highly efficient and accurate with popular kernels." @default.
- W2751238863 created "2017-09-15" @default.
- W2751238863 creator A5041524969 @default.
- W2751238863 creator A5042358015 @default.
- W2751238863 creator A5043360924 @default.
- W2751238863 creator A5073697071 @default.
- W2751238863 creator A5081803553 @default.
- W2751238863 date "2017-11-09" @default.
- W2751238863 modified "2023-10-18" @default.
- W2751238863 title "Scalable Log Determinants for Gaussian Process Kernel Learning" @default.
- W2751238863 cites W1483804921 @default.
- W2751238863 cites W1510444525 @default.
- W2751238863 cites W1555796242 @default.
- W2751238863 cites W1563653928 @default.
- W2751238863 cites W1571870753 @default.
- W2751238863 cites W1618393386 @default.
- W2751238863 cites W1746819321 @default.
- W2751238863 cites W1917966882 @default.
- W2751238863 cites W19451620 @default.
- W2751238863 cites W1965009939 @default.
- W2751238863 cites W1970136394 @default.
- W2751238863 cites W2107699930 @default.
- W2751238863 cites W2117670920 @default.
- W2751238863 cites W2138075164 @default.
- W2751238863 cites W2138779671 @default.
- W2751238863 cites W2148007822 @default.
- W2751238863 cites W2172067320 @default.
- W2751238863 cites W2313114995 @default.
- W2751238863 cites W2952402828 @default.
- W2751238863 cites W2952677397 @default.
- W2751238863 hasPublicationYear "2017" @default.
- W2751238863 type Work @default.
- W2751238863 sameAs 2751238863 @default.
- W2751238863 citedByCount "17" @default.
- W2751238863 countsByYear W27512388632016 @default.
- W2751238863 countsByYear W27512388632018 @default.
- W2751238863 countsByYear W27512388632019 @default.
- W2751238863 countsByYear W27512388632020 @default.
- W2751238863 countsByYear W27512388632021 @default.
- W2751238863 countsByYear W27512388632022 @default.
- W2751238863 crossrefType "posted-content" @default.
- W2751238863 hasAuthorship W2751238863A5041524969 @default.
- W2751238863 hasAuthorship W2751238863A5042358015 @default.
- W2751238863 hasAuthorship W2751238863A5043360924 @default.
- W2751238863 hasAuthorship W2751238863A5073697071 @default.
- W2751238863 hasAuthorship W2751238863A5081803553 @default.
- W2751238863 hasConcept C11413529 @default.
- W2751238863 hasConcept C118615104 @default.
- W2751238863 hasConcept C119256216 @default.
- W2751238863 hasConcept C121332964 @default.
- W2751238863 hasConcept C129785596 @default.
- W2751238863 hasConcept C134306372 @default.
- W2751238863 hasConcept C153083717 @default.
- W2751238863 hasConcept C154945302 @default.
- W2751238863 hasConcept C158693339 @default.
- W2751238863 hasConcept C163716315 @default.
- W2751238863 hasConcept C28826006 @default.
- W2751238863 hasConcept C33923547 @default.
- W2751238863 hasConcept C41008148 @default.
- W2751238863 hasConcept C61326573 @default.
- W2751238863 hasConcept C62520636 @default.
- W2751238863 hasConcept C64812099 @default.
- W2751238863 hasConcept C72010251 @default.
- W2751238863 hasConcept C74193536 @default.
- W2751238863 hasConceptScore W2751238863C11413529 @default.
- W2751238863 hasConceptScore W2751238863C118615104 @default.
- W2751238863 hasConceptScore W2751238863C119256216 @default.
- W2751238863 hasConceptScore W2751238863C121332964 @default.
- W2751238863 hasConceptScore W2751238863C129785596 @default.
- W2751238863 hasConceptScore W2751238863C134306372 @default.
- W2751238863 hasConceptScore W2751238863C153083717 @default.
- W2751238863 hasConceptScore W2751238863C154945302 @default.
- W2751238863 hasConceptScore W2751238863C158693339 @default.
- W2751238863 hasConceptScore W2751238863C163716315 @default.
- W2751238863 hasConceptScore W2751238863C28826006 @default.
- W2751238863 hasConceptScore W2751238863C33923547 @default.
- W2751238863 hasConceptScore W2751238863C41008148 @default.
- W2751238863 hasConceptScore W2751238863C61326573 @default.
- W2751238863 hasConceptScore W2751238863C62520636 @default.
- W2751238863 hasConceptScore W2751238863C64812099 @default.
- W2751238863 hasConceptScore W2751238863C72010251 @default.
- W2751238863 hasConceptScore W2751238863C74193536 @default.
- W2751238863 hasOpenAccess W2751238863 @default.
- W2751238863 hasRelatedWork W1557954956 @default.
- W2751238863 hasRelatedWork W1571870753 @default.
- W2751238863 hasRelatedWork W15962362 @default.
- W2751238863 hasRelatedWork W1746819321 @default.
- W2751238863 hasRelatedWork W1976730005 @default.
- W2751238863 hasRelatedWork W2099768828 @default.
- W2751238863 hasRelatedWork W2261298172 @default.
- W2751238863 hasRelatedWork W2289523632 @default.
- W2751238863 hasRelatedWork W2764280570 @default.
- W2751238863 hasRelatedWork W2949644579 @default.
- W2751238863 hasRelatedWork W2952677397 @default.
- W2751238863 hasRelatedWork W2962906164 @default.
- W2751238863 hasRelatedWork W2963745808 @default.
- W2751238863 hasRelatedWork W2964181129 @default.
- W2751238863 hasRelatedWork W3033817411 @default.
- W2751238863 hasRelatedWork W3100629876 @default.
- W2751238863 hasRelatedWork W3171107960 @default.