Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751274270> ?p ?o ?g. }
- W2751274270 endingPage "314" @default.
- W2751274270 startingPage "281" @default.
- W2751274270 abstract "Digitizing pathology is a current trend that makes large amounts of visual data available for automatic analysis. It allows to visualize and interpret pathologic cell and tissue samples in high-resolution images and with the help of computer tools. This opens the possibility to develop image analysis methods that help pathologists and support their image descriptions (i.e., staging, grading) with objective quantification of image features. Numerous detection, classification and segmentation algorithms of the underlying tissue primitives in histopathology images have been proposed in this respect. To better select the most suitable algorithms for histopathology tasks, biomedical image analysis challenges have evaluated and compared both traditional feature extraction with machine learning and deep learning techniques. This chapter provides an overview of methods addressing the analysis of histopathology images, as well as a brief description of the tasks they aim to solve. It is focused on histopathology images containing textured areas of different types." @default.
- W2751274270 created "2017-09-15" @default.
- W2751274270 creator A5003229825 @default.
- W2751274270 creator A5038717324 @default.
- W2751274270 creator A5052721934 @default.
- W2751274270 creator A5061961859 @default.
- W2751274270 creator A5067087969 @default.
- W2751274270 creator A5075411914 @default.
- W2751274270 creator A5075582918 @default.
- W2751274270 creator A5075789519 @default.
- W2751274270 date "2017-01-01" @default.
- W2751274270 modified "2023-10-09" @default.
- W2751274270 title "Analysis of Histopathology Images" @default.
- W2751274270 cites W1101750244 @default.
- W2751274270 cites W1516417927 @default.
- W2751274270 cites W1573167384 @default.
- W2751274270 cites W1837475262 @default.
- W2751274270 cites W1887296478 @default.
- W2751274270 cites W1950315773 @default.
- W2751274270 cites W1965542110 @default.
- W2751274270 cites W1972922624 @default.
- W2751274270 cites W1977885560 @default.
- W2751274270 cites W1982390426 @default.
- W2751274270 cites W1994419432 @default.
- W2751274270 cites W1995460724 @default.
- W2751274270 cites W2001810343 @default.
- W2751274270 cites W2004369799 @default.
- W2751274270 cites W2006870848 @default.
- W2751274270 cites W2011120797 @default.
- W2751274270 cites W2011966237 @default.
- W2751274270 cites W2014915963 @default.
- W2751274270 cites W2015193896 @default.
- W2751274270 cites W2026893473 @default.
- W2751274270 cites W2036695049 @default.
- W2751274270 cites W2039758605 @default.
- W2751274270 cites W2048990349 @default.
- W2751274270 cites W2051765910 @default.
- W2751274270 cites W2057114171 @default.
- W2751274270 cites W2071844402 @default.
- W2751274270 cites W2076063813 @default.
- W2751274270 cites W2080363053 @default.
- W2751274270 cites W2089580584 @default.
- W2751274270 cites W2103061399 @default.
- W2751274270 cites W2103243046 @default.
- W2751274270 cites W2103504761 @default.
- W2751274270 cites W2111574404 @default.
- W2751274270 cites W2112796928 @default.
- W2751274270 cites W2119774436 @default.
- W2751274270 cites W2122394460 @default.
- W2751274270 cites W2126047962 @default.
- W2751274270 cites W2127007253 @default.
- W2751274270 cites W2129224689 @default.
- W2751274270 cites W2132031490 @default.
- W2751274270 cites W2134647348 @default.
- W2751274270 cites W2142332605 @default.
- W2751274270 cites W2146655125 @default.
- W2751274270 cites W2151608510 @default.
- W2751274270 cites W2160633263 @default.
- W2751274270 cites W2160967973 @default.
- W2751274270 cites W2164582755 @default.
- W2751274270 cites W2170857061 @default.
- W2751274270 cites W2248620004 @default.
- W2751274270 cites W2312404985 @default.
- W2751274270 cites W2345010043 @default.
- W2751274270 cites W2401520370 @default.
- W2751274270 cites W2504150216 @default.
- W2751274270 cites W2516333753 @default.
- W2751274270 cites W2517898202 @default.
- W2751274270 cites W267005183 @default.
- W2751274270 cites W2896170082 @default.
- W2751274270 cites W2919115771 @default.
- W2751274270 cites W4247881463 @default.
- W2751274270 doi "https://doi.org/10.1016/b978-0-12-812133-7.00010-7" @default.
- W2751274270 hasPublicationYear "2017" @default.
- W2751274270 type Work @default.
- W2751274270 sameAs 2751274270 @default.
- W2751274270 citedByCount "32" @default.
- W2751274270 countsByYear W27512742702017 @default.
- W2751274270 countsByYear W27512742702018 @default.
- W2751274270 countsByYear W27512742702019 @default.
- W2751274270 countsByYear W27512742702020 @default.
- W2751274270 countsByYear W27512742702021 @default.
- W2751274270 countsByYear W27512742702022 @default.
- W2751274270 countsByYear W27512742702023 @default.
- W2751274270 crossrefType "book-chapter" @default.
- W2751274270 hasAuthorship W2751274270A5003229825 @default.
- W2751274270 hasAuthorship W2751274270A5038717324 @default.
- W2751274270 hasAuthorship W2751274270A5052721934 @default.
- W2751274270 hasAuthorship W2751274270A5061961859 @default.
- W2751274270 hasAuthorship W2751274270A5067087969 @default.
- W2751274270 hasAuthorship W2751274270A5075411914 @default.
- W2751274270 hasAuthorship W2751274270A5075582918 @default.
- W2751274270 hasAuthorship W2751274270A5075789519 @default.
- W2751274270 hasConcept C124504099 @default.
- W2751274270 hasConcept C127413603 @default.
- W2751274270 hasConcept C138885662 @default.
- W2751274270 hasConcept C142724271 @default.
- W2751274270 hasConcept C147176958 @default.