Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751596245> ?p ?o ?g. }
- W2751596245 endingPage "194" @default.
- W2751596245 startingPage "182" @default.
- W2751596245 abstract "The expansion of the electronic commerce, together with an increasing confidence of customers in electronic payments, makes of fraud detection a critical factor. Detecting frauds in (nearly) real time setting demands the design and the implementation of scalable learning techniques able to ingest and analyse massive amounts of streaming data. Recent advances in analytics and the availability of open source solutions for Big Data storage and processing open new perspectives to the fraud detection field. In this paper we present a SCAlable Real-time Fraud Finder (SCARFF) which integrates Big Data tools (Kafka, Spark and Cassandra) with a machine learning approach which deals with imbalance, nonstationarity and feedback latency. Experimental results on a massive dataset of real credit card transactions show that this framework is scalable, efficient and accurate over a big stream of transactions." @default.
- W2751596245 created "2017-09-15" @default.
- W2751596245 creator A5008848385 @default.
- W2751596245 creator A5025424957 @default.
- W2751596245 creator A5051273304 @default.
- W2751596245 creator A5059176984 @default.
- W2751596245 creator A5062257690 @default.
- W2751596245 creator A5072869049 @default.
- W2751596245 date "2018-05-01" @default.
- W2751596245 modified "2023-10-11" @default.
- W2751596245 title "SCARFF : A scalable framework for streaming credit card fraud detection with spark" @default.
- W2751596245 cites W1966493433 @default.
- W2751596245 cites W1973533434 @default.
- W2751596245 cites W1984610878 @default.
- W2751596245 cites W2016597886 @default.
- W2751596245 cites W2032435122 @default.
- W2751596245 cites W2038705219 @default.
- W2751596245 cites W2045049630 @default.
- W2751596245 cites W2057550598 @default.
- W2751596245 cites W2068319486 @default.
- W2751596245 cites W2087946700 @default.
- W2751596245 cites W2088402748 @default.
- W2751596245 cites W2099419573 @default.
- W2751596245 cites W2112627523 @default.
- W2751596245 cites W2133990480 @default.
- W2751596245 cites W2167488165 @default.
- W2751596245 cites W2171647935 @default.
- W2751596245 cites W2219140802 @default.
- W2751596245 cites W2230049528 @default.
- W2751596245 cites W2300408473 @default.
- W2751596245 cites W2321318280 @default.
- W2751596245 cites W2338318698 @default.
- W2751596245 cites W2585528949 @default.
- W2751596245 cites W2588336250 @default.
- W2751596245 cites W2602516395 @default.
- W2751596245 cites W2756359217 @default.
- W2751596245 cites W2911964244 @default.
- W2751596245 cites W2912573428 @default.
- W2751596245 cites W614715210 @default.
- W2751596245 cites W619160221 @default.
- W2751596245 cites W873782400 @default.
- W2751596245 cites W952360313 @default.
- W2751596245 doi "https://doi.org/10.1016/j.inffus.2017.09.005" @default.
- W2751596245 hasPublicationYear "2018" @default.
- W2751596245 type Work @default.
- W2751596245 sameAs 2751596245 @default.
- W2751596245 citedByCount "110" @default.
- W2751596245 countsByYear W27515962452018 @default.
- W2751596245 countsByYear W27515962452019 @default.
- W2751596245 countsByYear W27515962452020 @default.
- W2751596245 countsByYear W27515962452021 @default.
- W2751596245 countsByYear W27515962452022 @default.
- W2751596245 countsByYear W27515962452023 @default.
- W2751596245 crossrefType "journal-article" @default.
- W2751596245 hasAuthorship W2751596245A5008848385 @default.
- W2751596245 hasAuthorship W2751596245A5025424957 @default.
- W2751596245 hasAuthorship W2751596245A5051273304 @default.
- W2751596245 hasAuthorship W2751596245A5059176984 @default.
- W2751596245 hasAuthorship W2751596245A5062257690 @default.
- W2751596245 hasAuthorship W2751596245A5072869049 @default.
- W2751596245 hasBestOaLocation W27515962452 @default.
- W2751596245 hasConcept C124101348 @default.
- W2751596245 hasConcept C136764020 @default.
- W2751596245 hasConcept C145097563 @default.
- W2751596245 hasConcept C199360897 @default.
- W2751596245 hasConcept C2522767166 @default.
- W2751596245 hasConcept C2780747020 @default.
- W2751596245 hasConcept C2781215313 @default.
- W2751596245 hasConcept C2983355114 @default.
- W2751596245 hasConcept C38652104 @default.
- W2751596245 hasConcept C41008148 @default.
- W2751596245 hasConcept C48044578 @default.
- W2751596245 hasConcept C75684735 @default.
- W2751596245 hasConcept C77088390 @default.
- W2751596245 hasConcept C79158427 @default.
- W2751596245 hasConceptScore W2751596245C124101348 @default.
- W2751596245 hasConceptScore W2751596245C136764020 @default.
- W2751596245 hasConceptScore W2751596245C145097563 @default.
- W2751596245 hasConceptScore W2751596245C199360897 @default.
- W2751596245 hasConceptScore W2751596245C2522767166 @default.
- W2751596245 hasConceptScore W2751596245C2780747020 @default.
- W2751596245 hasConceptScore W2751596245C2781215313 @default.
- W2751596245 hasConceptScore W2751596245C2983355114 @default.
- W2751596245 hasConceptScore W2751596245C38652104 @default.
- W2751596245 hasConceptScore W2751596245C41008148 @default.
- W2751596245 hasConceptScore W2751596245C48044578 @default.
- W2751596245 hasConceptScore W2751596245C75684735 @default.
- W2751596245 hasConceptScore W2751596245C77088390 @default.
- W2751596245 hasConceptScore W2751596245C79158427 @default.
- W2751596245 hasFunder F4320322852 @default.
- W2751596245 hasLocation W27515962451 @default.
- W2751596245 hasLocation W27515962452 @default.
- W2751596245 hasOpenAccess W2751596245 @default.
- W2751596245 hasPrimaryLocation W27515962451 @default.
- W2751596245 hasRelatedWork W2586391568 @default.
- W2751596245 hasRelatedWork W2751596245 @default.
- W2751596245 hasRelatedWork W2752106475 @default.
- W2751596245 hasRelatedWork W2769430831 @default.