Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751773190> ?p ?o ?g. }
- W2751773190 endingPage "50" @default.
- W2751773190 startingPage "37" @default.
- W2751773190 abstract "Soil temperature (ST), as one of the critical meteorological parameters, has great effects on many underground soil ecological processes. Due to the fact that accurate measuring of ST is costly because of launching field equipment, evolving predictive models to approximate ST is of great importance. Therefore, achieving accurate, reliable and easily attainable predictions of daily ST values is the main objective of the current research. To that end, the usefulness of three data-driven procedures containing artificial neural networks (ANN), wavelet neural networks (WNN) and gene expression programming (GEP) were examined for the estimation of ST at different soil depths at Tabriz synoptic station, north-west of Iran. In conformity with the correlation coefficients among ST and meteorological parameters, it was found that air temperature, Sunshine hours and radiation had the most and unquestionable effects on ST prediction at all considered depths. For evaluating the performance of these approaches, four different statistical error measures were used: coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE) and Akaike’s information criterion (AIC). Moreover, Taylor diagrams were employed for assessing the similarity between the observed and predicted ST values. Results revealed that the WNN in all considered depths had the best performance in ST prediction, but with increasing soil depth, the effect of meteorological parameters and estimation accuracy were reduced rapidly. As a conclusion, the lower values of RMSE and higher values of CC proved the effectiveness of WNN for predicting ST at the studied depths." @default.
- W2751773190 created "2017-09-15" @default.
- W2751773190 creator A5007504977 @default.
- W2751773190 creator A5009073173 @default.
- W2751773190 creator A5011094117 @default.
- W2751773190 creator A5016315589 @default.
- W2751773190 creator A5018992272 @default.
- W2751773190 creator A5030140161 @default.
- W2751773190 creator A5044495811 @default.
- W2751773190 creator A5070985049 @default.
- W2751773190 date "2018-01-01" @default.
- W2751773190 modified "2023-10-16" @default.
- W2751773190 title "Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths" @default.
- W2751773190 cites W1192563785 @default.
- W2751773190 cites W1752682759 @default.
- W2751773190 cites W1812453514 @default.
- W2751773190 cites W1870036743 @default.
- W2751773190 cites W1985479415 @default.
- W2751773190 cites W1993879632 @default.
- W2751773190 cites W1994424196 @default.
- W2751773190 cites W1994666691 @default.
- W2751773190 cites W2006232035 @default.
- W2751773190 cites W2026938221 @default.
- W2751773190 cites W2038301573 @default.
- W2751773190 cites W2049275357 @default.
- W2751773190 cites W2054610305 @default.
- W2751773190 cites W2063084563 @default.
- W2751773190 cites W2077109541 @default.
- W2751773190 cites W2088123298 @default.
- W2751773190 cites W2096684483 @default.
- W2751773190 cites W2142635246 @default.
- W2751773190 cites W2159215977 @default.
- W2751773190 cites W2167190733 @default.
- W2751773190 cites W2343567034 @default.
- W2751773190 cites W2364887214 @default.
- W2751773190 cites W313978177 @default.
- W2751773190 doi "https://doi.org/10.1016/j.still.2017.08.012" @default.
- W2751773190 hasPublicationYear "2018" @default.
- W2751773190 type Work @default.
- W2751773190 sameAs 2751773190 @default.
- W2751773190 citedByCount "71" @default.
- W2751773190 countsByYear W27517731902018 @default.
- W2751773190 countsByYear W27517731902019 @default.
- W2751773190 countsByYear W27517731902020 @default.
- W2751773190 countsByYear W27517731902021 @default.
- W2751773190 countsByYear W27517731902022 @default.
- W2751773190 countsByYear W27517731902023 @default.
- W2751773190 crossrefType "journal-article" @default.
- W2751773190 hasAuthorship W2751773190A5007504977 @default.
- W2751773190 hasAuthorship W2751773190A5009073173 @default.
- W2751773190 hasAuthorship W2751773190A5011094117 @default.
- W2751773190 hasAuthorship W2751773190A5016315589 @default.
- W2751773190 hasAuthorship W2751773190A5018992272 @default.
- W2751773190 hasAuthorship W2751773190A5030140161 @default.
- W2751773190 hasAuthorship W2751773190A5044495811 @default.
- W2751773190 hasAuthorship W2751773190A5070985049 @default.
- W2751773190 hasConcept C105795698 @default.
- W2751773190 hasConcept C119857082 @default.
- W2751773190 hasConcept C121332964 @default.
- W2751773190 hasConcept C126674687 @default.
- W2751773190 hasConcept C128990827 @default.
- W2751773190 hasConcept C139945424 @default.
- W2751773190 hasConcept C153294291 @default.
- W2751773190 hasConcept C159390177 @default.
- W2751773190 hasConcept C188154048 @default.
- W2751773190 hasConcept C205649164 @default.
- W2751773190 hasConcept C2780092901 @default.
- W2751773190 hasConcept C33923547 @default.
- W2751773190 hasConcept C39432304 @default.
- W2751773190 hasConcept C41008148 @default.
- W2751773190 hasConcept C50644808 @default.
- W2751773190 hasConcept C61797465 @default.
- W2751773190 hasConcept C62520636 @default.
- W2751773190 hasConcept C6980683 @default.
- W2751773190 hasConceptScore W2751773190C105795698 @default.
- W2751773190 hasConceptScore W2751773190C119857082 @default.
- W2751773190 hasConceptScore W2751773190C121332964 @default.
- W2751773190 hasConceptScore W2751773190C126674687 @default.
- W2751773190 hasConceptScore W2751773190C128990827 @default.
- W2751773190 hasConceptScore W2751773190C139945424 @default.
- W2751773190 hasConceptScore W2751773190C153294291 @default.
- W2751773190 hasConceptScore W2751773190C159390177 @default.
- W2751773190 hasConceptScore W2751773190C188154048 @default.
- W2751773190 hasConceptScore W2751773190C205649164 @default.
- W2751773190 hasConceptScore W2751773190C2780092901 @default.
- W2751773190 hasConceptScore W2751773190C33923547 @default.
- W2751773190 hasConceptScore W2751773190C39432304 @default.
- W2751773190 hasConceptScore W2751773190C41008148 @default.
- W2751773190 hasConceptScore W2751773190C50644808 @default.
- W2751773190 hasConceptScore W2751773190C61797465 @default.
- W2751773190 hasConceptScore W2751773190C62520636 @default.
- W2751773190 hasConceptScore W2751773190C6980683 @default.
- W2751773190 hasLocation W27517731901 @default.
- W2751773190 hasOpenAccess W2751773190 @default.
- W2751773190 hasPrimaryLocation W27517731901 @default.
- W2751773190 hasRelatedWork W2188032833 @default.
- W2751773190 hasRelatedWork W2332474383 @default.
- W2751773190 hasRelatedWork W2751773190 @default.