Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751830333> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2751830333 endingPage "398" @default.
- W2751830333 startingPage "391" @default.
- W2751830333 abstract "In this paper, we propose and evaluate a new method for classifying between malignant and benign prostate cancer lesions in multiparametric magnetic resonance imaging (MRI). We show that synergistically combining automatically-learned and handcrafted features can significantly improve the classification performance. Our method utilizes features extracted from convolutional neural networks (CNNs), texture features learned via a discriminative sparsity-regularized approach, and hand-crafted statistical features. To assess the efficacy of different feature sets, we use AdaBoost with decision trees to classify prostate cancer lesions using different sets of features. CNN-derived, texture, and statistical features achieved area under the receiver operating characteristic curve (AUC) of 0.75, 0.68, and 0.70, respectively. Augmenting CNN features with texture and statistical features increased the AUC to 0.84 and 0.82, respectively. Combining all three feature types led to an AUC of 0.87. Our results indicate that in medical applications where training data is scarce, the classification performance achieved by CNNs or sparsity-regularized classification methods alone can be sub-optimal. Alternatively, one can treat these methods as implicit feature extraction mechanisms and combine their learned features with hand-crafted features using meta-classifiers to obtain superior classification performance." @default.
- W2751830333 created "2017-09-15" @default.
- W2751830333 creator A5051265222 @default.
- W2751830333 creator A5076562643 @default.
- W2751830333 date "2017-01-01" @default.
- W2751830333 modified "2023-09-30" @default.
- W2751830333 title "Synergistic Combination of Learned and Hand-Crafted Features for Prostate Lesion Classification in Multiparametric Magnetic Resonance Imaging" @default.
- W2751830333 cites W1871050032 @default.
- W2751830333 cites W1884191083 @default.
- W2751830333 cites W1992008660 @default.
- W2751830333 cites W2049522781 @default.
- W2751830333 cites W2059559115 @default.
- W2751830333 cites W2082855665 @default.
- W2751830333 cites W2107030642 @default.
- W2751830333 cites W2124539070 @default.
- W2751830333 cites W317170363 @default.
- W2751830333 doi "https://doi.org/10.1007/978-3-319-66179-7_45" @default.
- W2751830333 hasPublicationYear "2017" @default.
- W2751830333 type Work @default.
- W2751830333 sameAs 2751830333 @default.
- W2751830333 citedByCount "5" @default.
- W2751830333 countsByYear W27518303332019 @default.
- W2751830333 crossrefType "book-chapter" @default.
- W2751830333 hasAuthorship W2751830333A5051265222 @default.
- W2751830333 hasAuthorship W2751830333A5076562643 @default.
- W2751830333 hasConcept C115961682 @default.
- W2751830333 hasConcept C119857082 @default.
- W2751830333 hasConcept C12267149 @default.
- W2751830333 hasConcept C126838900 @default.
- W2751830333 hasConcept C138885662 @default.
- W2751830333 hasConcept C141404830 @default.
- W2751830333 hasConcept C143409427 @default.
- W2751830333 hasConcept C153180895 @default.
- W2751830333 hasConcept C154945302 @default.
- W2751830333 hasConcept C2776401178 @default.
- W2751830333 hasConcept C31601959 @default.
- W2751830333 hasConcept C41008148 @default.
- W2751830333 hasConcept C41895202 @default.
- W2751830333 hasConcept C52622490 @default.
- W2751830333 hasConcept C58471807 @default.
- W2751830333 hasConcept C71924100 @default.
- W2751830333 hasConcept C75294576 @default.
- W2751830333 hasConcept C81363708 @default.
- W2751830333 hasConcept C97931131 @default.
- W2751830333 hasConceptScore W2751830333C115961682 @default.
- W2751830333 hasConceptScore W2751830333C119857082 @default.
- W2751830333 hasConceptScore W2751830333C12267149 @default.
- W2751830333 hasConceptScore W2751830333C126838900 @default.
- W2751830333 hasConceptScore W2751830333C138885662 @default.
- W2751830333 hasConceptScore W2751830333C141404830 @default.
- W2751830333 hasConceptScore W2751830333C143409427 @default.
- W2751830333 hasConceptScore W2751830333C153180895 @default.
- W2751830333 hasConceptScore W2751830333C154945302 @default.
- W2751830333 hasConceptScore W2751830333C2776401178 @default.
- W2751830333 hasConceptScore W2751830333C31601959 @default.
- W2751830333 hasConceptScore W2751830333C41008148 @default.
- W2751830333 hasConceptScore W2751830333C41895202 @default.
- W2751830333 hasConceptScore W2751830333C52622490 @default.
- W2751830333 hasConceptScore W2751830333C58471807 @default.
- W2751830333 hasConceptScore W2751830333C71924100 @default.
- W2751830333 hasConceptScore W2751830333C75294576 @default.
- W2751830333 hasConceptScore W2751830333C81363708 @default.
- W2751830333 hasConceptScore W2751830333C97931131 @default.
- W2751830333 hasLocation W27518303331 @default.
- W2751830333 hasOpenAccess W2751830333 @default.
- W2751830333 hasPrimaryLocation W27518303331 @default.
- W2751830333 hasRelatedWork W2027103233 @default.
- W2751830333 hasRelatedWork W2125629257 @default.
- W2751830333 hasRelatedWork W2285052147 @default.
- W2751830333 hasRelatedWork W2336974148 @default.
- W2751830333 hasRelatedWork W2406522397 @default.
- W2751830333 hasRelatedWork W2725397116 @default.
- W2751830333 hasRelatedWork W2806866760 @default.
- W2751830333 hasRelatedWork W2951715702 @default.
- W2751830333 hasRelatedWork W2970216048 @default.
- W2751830333 hasRelatedWork W2345184372 @default.
- W2751830333 isParatext "false" @default.
- W2751830333 isRetracted "false" @default.
- W2751830333 magId "2751830333" @default.
- W2751830333 workType "book-chapter" @default.