Matches in SemOpenAlex for { <https://semopenalex.org/work/W2751844449> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2751844449 abstract "Detecting regular and efficient cyclic models is the demanding activity for data analysts due to unstructured, vigorous and enormous raw information produced from web. Many existing approaches generate large candidate patterns in the occurrence of huge and complex databases. In this work, two novel algorithms are proposed and a comparative examination is performed by considering scalability and performance parameters. The first algorithm is, EFPMA (Extended Regular Model Detection Algorithm) used to find frequent sequential patterns from the spatiotemporal dataset and the second one is, ETMA (Enhanced Tree-based Mining Algorithm) for detecting effective cyclic models with symbolic database representation. EFPMA is an algorithm grows models from both ends (prefixes and suffixes) of detected patterns, which results in faster pattern growth because of less levels of database projection compared to existing approaches such as Prefixspan and SPADE. ETMA uses distinct notions to store and manage transactions data horizontally such as segment, sequence and individual symbols. ETMA exploits a partition-and-conquer method to find maximal patterns by using symbolic notations. Using this algorithm, we can mine cyclic models in full-series sequential patterns including subsection series also. ETMA reduces the memory consumption and makes use of the efficient symbolic operation. Furthermore, ETMA only records time-series instances dynamically, in terms of character, series and section approaches respectively. The extent of the pattern and proving efficiency of the reducing and retrieval techniques from synthetic and actual datasets is a really open & challenging mining problem. These techniques are useful in data streams, traffic risk analysis, medical diagnosis, DNA sequence Mining, Earthquake prediction applications. Extensive investigational outcomes illustrates that the algorithms outperforms well towards efficiency and scalability than ECLAT, STNR and MAFIA approaches." @default.
- W2751844449 created "2017-09-15" @default.
- W2751844449 creator A5025344975 @default.
- W2751844449 creator A5073008067 @default.
- W2751844449 creator A5074105703 @default.
- W2751844449 date "2017-08-01" @default.
- W2751844449 modified "2023-09-27" @default.
- W2751844449 title "A Comparative Study of Frequent and Maximal Periodic Pattern Mining Algorithms in Spatiotemporal Databases" @default.
- W2751844449 cites W1608194207 @default.
- W2751844449 cites W2129555316 @default.
- W2751844449 cites W2146606092 @default.
- W2751844449 cites W2153218475 @default.
- W2751844449 doi "https://doi.org/10.1088/1757-899x/225/1/012066" @default.
- W2751844449 hasPublicationYear "2017" @default.
- W2751844449 type Work @default.
- W2751844449 sameAs 2751844449 @default.
- W2751844449 citedByCount "1" @default.
- W2751844449 countsByYear W27518444492019 @default.
- W2751844449 crossrefType "journal-article" @default.
- W2751844449 hasAuthorship W2751844449A5025344975 @default.
- W2751844449 hasAuthorship W2751844449A5073008067 @default.
- W2751844449 hasAuthorship W2751844449A5074105703 @default.
- W2751844449 hasBestOaLocation W27518444491 @default.
- W2751844449 hasConcept C11413529 @default.
- W2751844449 hasConcept C114614502 @default.
- W2751844449 hasConcept C124101348 @default.
- W2751844449 hasConcept C143724316 @default.
- W2751844449 hasConcept C151730666 @default.
- W2751844449 hasConcept C154945302 @default.
- W2751844449 hasConcept C162319229 @default.
- W2751844449 hasConcept C190290938 @default.
- W2751844449 hasConcept C199360897 @default.
- W2751844449 hasConcept C33923547 @default.
- W2751844449 hasConcept C41008148 @default.
- W2751844449 hasConcept C42812 @default.
- W2751844449 hasConcept C48044578 @default.
- W2751844449 hasConcept C75165309 @default.
- W2751844449 hasConcept C77088390 @default.
- W2751844449 hasConcept C86803240 @default.
- W2751844449 hasConceptScore W2751844449C11413529 @default.
- W2751844449 hasConceptScore W2751844449C114614502 @default.
- W2751844449 hasConceptScore W2751844449C124101348 @default.
- W2751844449 hasConceptScore W2751844449C143724316 @default.
- W2751844449 hasConceptScore W2751844449C151730666 @default.
- W2751844449 hasConceptScore W2751844449C154945302 @default.
- W2751844449 hasConceptScore W2751844449C162319229 @default.
- W2751844449 hasConceptScore W2751844449C190290938 @default.
- W2751844449 hasConceptScore W2751844449C199360897 @default.
- W2751844449 hasConceptScore W2751844449C33923547 @default.
- W2751844449 hasConceptScore W2751844449C41008148 @default.
- W2751844449 hasConceptScore W2751844449C42812 @default.
- W2751844449 hasConceptScore W2751844449C48044578 @default.
- W2751844449 hasConceptScore W2751844449C75165309 @default.
- W2751844449 hasConceptScore W2751844449C77088390 @default.
- W2751844449 hasConceptScore W2751844449C86803240 @default.
- W2751844449 hasLocation W27518444491 @default.
- W2751844449 hasOpenAccess W2751844449 @default.
- W2751844449 hasPrimaryLocation W27518444491 @default.
- W2751844449 hasRelatedWork W1499516487 @default.
- W2751844449 hasRelatedWork W1608194207 @default.
- W2751844449 hasRelatedWork W1778751767 @default.
- W2751844449 hasRelatedWork W2016867747 @default.
- W2751844449 hasRelatedWork W2028157671 @default.
- W2751844449 hasRelatedWork W2042366508 @default.
- W2751844449 hasRelatedWork W2092542234 @default.
- W2751844449 hasRelatedWork W2096126105 @default.
- W2751844449 hasRelatedWork W2112520561 @default.
- W2751844449 hasRelatedWork W2123488392 @default.
- W2751844449 hasRelatedWork W2551786665 @default.
- W2751844449 hasRelatedWork W2590683580 @default.
- W2751844449 hasRelatedWork W2738243119 @default.
- W2751844449 hasRelatedWork W2810127430 @default.
- W2751844449 hasRelatedWork W2913056274 @default.
- W2751844449 hasRelatedWork W435774925 @default.
- W2751844449 hasRelatedWork W2185071849 @default.
- W2751844449 hasRelatedWork W2186652802 @default.
- W2751844449 hasRelatedWork W2326308996 @default.
- W2751844449 hasRelatedWork W2488245532 @default.
- W2751844449 isParatext "false" @default.
- W2751844449 isRetracted "false" @default.
- W2751844449 magId "2751844449" @default.
- W2751844449 workType "article" @default.