Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752012950> ?p ?o ?g. }
- W2752012950 endingPage "175" @default.
- W2752012950 startingPage "168" @default.
- W2752012950 abstract "Sparse representation-based brain network modeling, although popular, often results in relatively large inter-subject variability in network structures. This inevitably makes it difficult for inter-subject comparison, thus eventually deteriorating the generalization capability of personalized disease diagnosis. Accordingly, group sparse representation has been proposed to alleviate such limitation by jointly estimating connectivity weights for all subjects. However, the constructed brain networks based on this method often fail in providing satisfactory separability between the subjects from different groups (e.g., patients vs. normal controls), which will also affect the performance of computer-aided disease diagnosis. Based on the hypothesis that subjects from the same group should have larger similarity in their functional connectivity (FC) patterns than subjects from other groups, we propose an inter-subject FC similarity-guided group sparse network modeling method. In this method, we explicitly include the inter-subject FC similarity as a constraint to conduct group-wise FC network modeling, while retaining sufficient between-group differences in the resultant FC networks. This improves the separability of brain functional networks between different groups, thus facilitating better personalized brain disease diagnosis. Specifically, the inter-subject FC similarity is roughly estimated by comparing the Pearson's correlation based FC patterns of each brain region to other regions for each pair of the subjects. Then, this is implemented as an additional weighting term to ensure the adequate inter-subject FC differences between the subjects from different groups. Of note, our method retains the group sparsity constraint to ensure the overall consistency of the resultant individual brain networks. Experimental results show that our method achieves a balanced trade-off by not only generating the individually consistent FC networks, but also effectively maintaining the necessary group difference, thereby significantly improving connectomics-based diagnosis for mild cognitive impairment (MCI)." @default.
- W2752012950 created "2017-09-15" @default.
- W2752012950 creator A5000937401 @default.
- W2752012950 creator A5010949964 @default.
- W2752012950 creator A5037340898 @default.
- W2752012950 creator A5050560717 @default.
- W2752012950 creator A5050852420 @default.
- W2752012950 creator A5071773009 @default.
- W2752012950 date "2017-01-01" @default.
- W2752012950 modified "2023-10-02" @default.
- W2752012950 title "Inter-subject Similarity Guided Brain Network Modeling for MCI Diagnosis" @default.
- W2752012950 cites W1550721541 @default.
- W2752012950 cites W1736658383 @default.
- W2752012950 cites W2007369824 @default.
- W2752012950 cites W2017237939 @default.
- W2752012950 cites W2039728861 @default.
- W2752012950 cites W2074035958 @default.
- W2752012950 cites W2112359769 @default.
- W2752012950 cites W2137554996 @default.
- W2752012950 cites W2138019504 @default.
- W2752012950 cites W2157106546 @default.
- W2752012950 cites W2168094269 @default.
- W2752012950 cites W2175191116 @default.
- W2752012950 cites W2335437633 @default.
- W2752012950 cites W2345678177 @default.
- W2752012950 cites W2415584503 @default.
- W2752012950 cites W2422365436 @default.
- W2752012950 cites W2583114732 @default.
- W2752012950 cites W2618983688 @default.
- W2752012950 cites W2737156152 @default.
- W2752012950 cites W2752287204 @default.
- W2752012950 doi "https://doi.org/10.1007/978-3-319-67389-9_20" @default.
- W2752012950 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6185737" @default.
- W2752012950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30320309" @default.
- W2752012950 hasPublicationYear "2017" @default.
- W2752012950 type Work @default.
- W2752012950 sameAs 2752012950 @default.
- W2752012950 citedByCount "5" @default.
- W2752012950 countsByYear W27520129502019 @default.
- W2752012950 countsByYear W27520129502020 @default.
- W2752012950 countsByYear W27520129502022 @default.
- W2752012950 countsByYear W27520129502023 @default.
- W2752012950 crossrefType "book-chapter" @default.
- W2752012950 hasAuthorship W2752012950A5000937401 @default.
- W2752012950 hasAuthorship W2752012950A5010949964 @default.
- W2752012950 hasAuthorship W2752012950A5037340898 @default.
- W2752012950 hasAuthorship W2752012950A5050560717 @default.
- W2752012950 hasAuthorship W2752012950A5050852420 @default.
- W2752012950 hasAuthorship W2752012950A5071773009 @default.
- W2752012950 hasBestOaLocation W27520129502 @default.
- W2752012950 hasConcept C103278499 @default.
- W2752012950 hasConcept C115961682 @default.
- W2752012950 hasConcept C119857082 @default.
- W2752012950 hasConcept C124101348 @default.
- W2752012950 hasConcept C126838900 @default.
- W2752012950 hasConcept C134306372 @default.
- W2752012950 hasConcept C142724271 @default.
- W2752012950 hasConcept C153180895 @default.
- W2752012950 hasConcept C154945302 @default.
- W2752012950 hasConcept C161191863 @default.
- W2752012950 hasConcept C177148314 @default.
- W2752012950 hasConcept C17744445 @default.
- W2752012950 hasConcept C183115368 @default.
- W2752012950 hasConcept C199539241 @default.
- W2752012950 hasConcept C2524010 @default.
- W2752012950 hasConcept C2776036281 @default.
- W2752012950 hasConcept C2776359362 @default.
- W2752012950 hasConcept C2776436953 @default.
- W2752012950 hasConcept C2777855551 @default.
- W2752012950 hasConcept C2779134260 @default.
- W2752012950 hasConcept C2991673738 @default.
- W2752012950 hasConcept C33923547 @default.
- W2752012950 hasConcept C41008148 @default.
- W2752012950 hasConcept C71924100 @default.
- W2752012950 hasConcept C94625758 @default.
- W2752012950 hasConceptScore W2752012950C103278499 @default.
- W2752012950 hasConceptScore W2752012950C115961682 @default.
- W2752012950 hasConceptScore W2752012950C119857082 @default.
- W2752012950 hasConceptScore W2752012950C124101348 @default.
- W2752012950 hasConceptScore W2752012950C126838900 @default.
- W2752012950 hasConceptScore W2752012950C134306372 @default.
- W2752012950 hasConceptScore W2752012950C142724271 @default.
- W2752012950 hasConceptScore W2752012950C153180895 @default.
- W2752012950 hasConceptScore W2752012950C154945302 @default.
- W2752012950 hasConceptScore W2752012950C161191863 @default.
- W2752012950 hasConceptScore W2752012950C177148314 @default.
- W2752012950 hasConceptScore W2752012950C17744445 @default.
- W2752012950 hasConceptScore W2752012950C183115368 @default.
- W2752012950 hasConceptScore W2752012950C199539241 @default.
- W2752012950 hasConceptScore W2752012950C2524010 @default.
- W2752012950 hasConceptScore W2752012950C2776036281 @default.
- W2752012950 hasConceptScore W2752012950C2776359362 @default.
- W2752012950 hasConceptScore W2752012950C2776436953 @default.
- W2752012950 hasConceptScore W2752012950C2777855551 @default.
- W2752012950 hasConceptScore W2752012950C2779134260 @default.
- W2752012950 hasConceptScore W2752012950C2991673738 @default.
- W2752012950 hasConceptScore W2752012950C33923547 @default.
- W2752012950 hasConceptScore W2752012950C41008148 @default.