Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752085308> ?p ?o ?g. }
- W2752085308 abstract "Cellular automata (CA) models are used a lot in urban planning for land use change simulation. Neighborhood rules in CA models are normally derived by analyzing raster maps, while in reality, urban planning is based on parcels. Moreover, new trends of land redevelopment require land use transition impacts to be addressed and incorporated in land use simulation. This can be accomplished by comparing neighborhood compositions of a particular site, before and after its transition. This paper presents a generic approach to semi-automatically discover neighborhood rules by analyzing vector maps, with a special focus on transition impact analysis. The approach contains one script for manipulating vector data and another script for visualizing neighborhood compositions. A step by step instruction of this approach is presented. The North Brabant region of the Netherlands is used as a case study area. Industrial site transition is used as an illustration for land use transition process. Three types of statistical comparison algorithms are used to compare the land use model which uses neighborhood rules discovered from the proposed approach with a benchmark model which only models land use self-influence. The robustness of the approach is studied by separating the region into urban and non-urban areas. Results show the applicability of this approach in improving transparency and applicability of CA models." @default.
- W2752085308 created "2017-09-15" @default.
- W2752085308 creator A5014248808 @default.
- W2752085308 creator A5035913976 @default.
- W2752085308 creator A5074060348 @default.
- W2752085308 date "2017-11-01" @default.
- W2752085308 modified "2023-09-25" @default.
- W2752085308 title "A semi-automatic neighborhood rule discovery approach" @default.
- W2752085308 cites W1162363104 @default.
- W2752085308 cites W1607363640 @default.
- W2752085308 cites W1919295619 @default.
- W2752085308 cites W1969446897 @default.
- W2752085308 cites W1970339185 @default.
- W2752085308 cites W1973749534 @default.
- W2752085308 cites W1986426309 @default.
- W2752085308 cites W1990336537 @default.
- W2752085308 cites W1990607561 @default.
- W2752085308 cites W1993572911 @default.
- W2752085308 cites W1998131966 @default.
- W2752085308 cites W1998728412 @default.
- W2752085308 cites W2000730663 @default.
- W2752085308 cites W2011881717 @default.
- W2752085308 cites W2016577007 @default.
- W2752085308 cites W2017530334 @default.
- W2752085308 cites W2019543400 @default.
- W2752085308 cites W2022925407 @default.
- W2752085308 cites W2022944615 @default.
- W2752085308 cites W2025153444 @default.
- W2752085308 cites W2025406778 @default.
- W2752085308 cites W2032568597 @default.
- W2752085308 cites W2036871957 @default.
- W2752085308 cites W2057204588 @default.
- W2752085308 cites W2064640950 @default.
- W2752085308 cites W2067117278 @default.
- W2752085308 cites W2081200352 @default.
- W2752085308 cites W2094141311 @default.
- W2752085308 cites W2099054202 @default.
- W2752085308 cites W2100459552 @default.
- W2752085308 cites W2106084229 @default.
- W2752085308 cites W2106213263 @default.
- W2752085308 cites W2121783226 @default.
- W2752085308 cites W2127059652 @default.
- W2752085308 cites W2132227723 @default.
- W2752085308 cites W2135617432 @default.
- W2752085308 cites W2145747262 @default.
- W2752085308 cites W2156484217 @default.
- W2752085308 cites W2161835209 @default.
- W2752085308 cites W2165713677 @default.
- W2752085308 cites W2181247745 @default.
- W2752085308 cites W2192545109 @default.
- W2752085308 cites W2214183319 @default.
- W2752085308 cites W2222549882 @default.
- W2752085308 cites W2275517785 @default.
- W2752085308 cites W2277222488 @default.
- W2752085308 cites W2346035507 @default.
- W2752085308 cites W2358018720 @default.
- W2752085308 cites W2586882886 @default.
- W2752085308 cites W44378039 @default.
- W2752085308 doi "https://doi.org/10.1016/j.apgeog.2017.08.014" @default.
- W2752085308 hasPublicationYear "2017" @default.
- W2752085308 type Work @default.
- W2752085308 sameAs 2752085308 @default.
- W2752085308 citedByCount "10" @default.
- W2752085308 countsByYear W27520853082018 @default.
- W2752085308 countsByYear W27520853082019 @default.
- W2752085308 countsByYear W27520853082020 @default.
- W2752085308 countsByYear W27520853082021 @default.
- W2752085308 crossrefType "journal-article" @default.
- W2752085308 hasAuthorship W2752085308A5014248808 @default.
- W2752085308 hasAuthorship W2752085308A5035913976 @default.
- W2752085308 hasAuthorship W2752085308A5074060348 @default.
- W2752085308 hasConcept C104317684 @default.
- W2752085308 hasConcept C124101348 @default.
- W2752085308 hasConcept C127413603 @default.
- W2752085308 hasConcept C147176958 @default.
- W2752085308 hasConcept C154945302 @default.
- W2752085308 hasConcept C181844469 @default.
- W2752085308 hasConcept C184603391 @default.
- W2752085308 hasConcept C185592680 @default.
- W2752085308 hasConcept C185798385 @default.
- W2752085308 hasConcept C205649164 @default.
- W2752085308 hasConcept C2780155792 @default.
- W2752085308 hasConcept C35527583 @default.
- W2752085308 hasConcept C41008148 @default.
- W2752085308 hasConcept C4792198 @default.
- W2752085308 hasConcept C49545453 @default.
- W2752085308 hasConcept C55493867 @default.
- W2752085308 hasConcept C58640448 @default.
- W2752085308 hasConcept C63479239 @default.
- W2752085308 hasConceptScore W2752085308C104317684 @default.
- W2752085308 hasConceptScore W2752085308C124101348 @default.
- W2752085308 hasConceptScore W2752085308C127413603 @default.
- W2752085308 hasConceptScore W2752085308C147176958 @default.
- W2752085308 hasConceptScore W2752085308C154945302 @default.
- W2752085308 hasConceptScore W2752085308C181844469 @default.
- W2752085308 hasConceptScore W2752085308C184603391 @default.
- W2752085308 hasConceptScore W2752085308C185592680 @default.
- W2752085308 hasConceptScore W2752085308C185798385 @default.
- W2752085308 hasConceptScore W2752085308C205649164 @default.
- W2752085308 hasConceptScore W2752085308C2780155792 @default.