Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752175890> ?p ?o ?g. }
- W2752175890 endingPage "2308" @default.
- W2752175890 startingPage "2297" @default.
- W2752175890 abstract "ConspectusBioorthogonal chemistry has had a major impact on the study of biological processes in vivo. Biomolecules of interest can be tracked by using probes and reporters that do not react with cellular components and do not interfere with metabolic processes in living cells. Much time and effort has been devoted to the screening of potential bioorthogonal reagents experimentally. This Account describes how our groups have performed computational screening of reactivity and mutual orthogonality. Our collaborations with experimentalists have led to the development of new and useful reactions. Dozens of bioorthogonal cycloadditions have been reported in the literature in the past few years, but as interest in tracking multiple targets arises, our computational screening has gained importance for the discovery of new mutually orthogonal bioorthogonal cycloaddition pairs.The reactivities of strained alkenes and alkynes with common 1,3-dipoles such as azides, along with mesoionic sydnones and other novel 1,3-dipoles, have been explored. Studies of “inverse-electron-demand” dienes such as triazines and tetrazines that have been used in bioorthogonal Diels–Alder cycloadditions are described. The color graphics we have developed give a snapshot of whether reactions are fast enough for cellular applications (green), adequately reactive for labeling (yellow), or only useful for synthesis or do not occur at all (red). The colors of each box give an instant view of rates, while bar graphs provide an analysis of the factors that control reactivity. This analysis uses the distortion/interaction or activation strain model of cycloaddition reactivity developed independently by our group and that of F. Matthias Bickelhaupt in The Netherlands. The model analyzes activation barriers in terms of the energy required to distort the reactants to the transition state geometry. This energy, called the distortion energy or activation strain, constitutes the major component of the activation energy. The strong bonding interaction between the termini of the two reactants, which we call the interaction energy, overcomes the distortion energy and leads to the new bonds in the products. This Account describes how we have analyzed and predicted bioorthogonal cycloaddition reactivity using the distortion/interaction model and how our experimental collaborators have employed these insights to create new bioorthogonal cycloadditions. The graphics we use document and predict which combinations of cycloadditions will be useful in bioorthogonal chemistry and which pairs of reactions are mutually orthogonal. For example, the fast reaction of 5-phenyl-1,2,4-triazine and a thiacycloheptyne will not interfere with the other fast reaction of 3,6-diphenyl-1,2,4,5-tetrazine and a cyclopropene. No cross reactions will occur, as these are very slow reactions." @default.
- W2752175890 created "2017-09-15" @default.
- W2752175890 creator A5042178740 @default.
- W2752175890 creator A5051802294 @default.
- W2752175890 creator A5088782097 @default.
- W2752175890 date "2017-09-06" @default.
- W2752175890 modified "2023-10-14" @default.
- W2752175890 title "Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities" @default.
- W2752175890 cites W1593239264 @default.
- W2752175890 cites W1925589081 @default.
- W2752175890 cites W1968222033 @default.
- W2752175890 cites W1969785235 @default.
- W2752175890 cites W1977762520 @default.
- W2752175890 cites W1978536813 @default.
- W2752175890 cites W1980232662 @default.
- W2752175890 cites W1981659539 @default.
- W2752175890 cites W1988901523 @default.
- W2752175890 cites W1997099073 @default.
- W2752175890 cites W1998798346 @default.
- W2752175890 cites W1999004953 @default.
- W2752175890 cites W2000547662 @default.
- W2752175890 cites W2001966270 @default.
- W2752175890 cites W2002945618 @default.
- W2752175890 cites W2012190971 @default.
- W2752175890 cites W2017388893 @default.
- W2752175890 cites W2021946498 @default.
- W2752175890 cites W2030555571 @default.
- W2752175890 cites W2033263204 @default.
- W2752175890 cites W2034403740 @default.
- W2752175890 cites W2039559098 @default.
- W2752175890 cites W2039730742 @default.
- W2752175890 cites W2043821378 @default.
- W2752175890 cites W2050466265 @default.
- W2752175890 cites W2058848030 @default.
- W2752175890 cites W2060943125 @default.
- W2752175890 cites W2061232132 @default.
- W2752175890 cites W2062524026 @default.
- W2752175890 cites W2068358349 @default.
- W2752175890 cites W2077790287 @default.
- W2752175890 cites W2082403881 @default.
- W2752175890 cites W2084857126 @default.
- W2752175890 cites W2085336624 @default.
- W2752175890 cites W2089693526 @default.
- W2752175890 cites W2097953276 @default.
- W2752175890 cites W2112984273 @default.
- W2752175890 cites W2115427274 @default.
- W2752175890 cites W2141133547 @default.
- W2752175890 cites W2141154798 @default.
- W2752175890 cites W2145662716 @default.
- W2752175890 cites W2145796164 @default.
- W2752175890 cites W2150438695 @default.
- W2752175890 cites W2150697053 @default.
- W2752175890 cites W2158502376 @default.
- W2752175890 cites W2170894800 @default.
- W2752175890 cites W2172413067 @default.
- W2752175890 cites W2312920775 @default.
- W2752175890 cites W2315820907 @default.
- W2752175890 cites W2322302718 @default.
- W2752175890 cites W2322691084 @default.
- W2752175890 cites W2324029379 @default.
- W2752175890 cites W2325940861 @default.
- W2752175890 cites W2332024781 @default.
- W2752175890 cites W2335208324 @default.
- W2752175890 cites W2337570946 @default.
- W2752175890 cites W2410801480 @default.
- W2752175890 cites W2734500117 @default.
- W2752175890 cites W2736178248 @default.
- W2752175890 cites W2950151259 @default.
- W2752175890 cites W3004477464 @default.
- W2752175890 cites W3004841634 @default.
- W2752175890 cites W3005455541 @default.
- W2752175890 cites W4255389013 @default.
- W2752175890 cites W563531732 @default.
- W2752175890 cites W598838366 @default.
- W2752175890 doi "https://doi.org/10.1021/acs.accounts.7b00265" @default.
- W2752175890 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5675536" @default.
- W2752175890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28876890" @default.
- W2752175890 hasPublicationYear "2017" @default.
- W2752175890 type Work @default.
- W2752175890 sameAs 2752175890 @default.
- W2752175890 citedByCount "130" @default.
- W2752175890 countsByYear W27521758902016 @default.
- W2752175890 countsByYear W27521758902017 @default.
- W2752175890 countsByYear W27521758902018 @default.
- W2752175890 countsByYear W27521758902019 @default.
- W2752175890 countsByYear W27521758902020 @default.
- W2752175890 countsByYear W27521758902021 @default.
- W2752175890 countsByYear W27521758902022 @default.
- W2752175890 countsByYear W27521758902023 @default.
- W2752175890 crossrefType "journal-article" @default.
- W2752175890 hasAuthorship W2752175890A5042178740 @default.
- W2752175890 hasAuthorship W2752175890A5051802294 @default.
- W2752175890 hasAuthorship W2752175890A5088782097 @default.
- W2752175890 hasBestOaLocation W27521758902 @default.
- W2752175890 hasConcept C142724271 @default.
- W2752175890 hasConcept C161790260 @default.
- W2752175890 hasConcept C178790620 @default.
- W2752175890 hasConcept C185592680 @default.