Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752207938> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2752207938 endingPage "618" @default.
- W2752207938 startingPage "610" @default.
- W2752207938 abstract "Successful automated detection of short needles during an intervention is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes. In this paper, we present a novel approach to detect needle voxels in 3D ultrasound volume with high precision using convolutional neural networks. Each voxel is classified from locally-extracted raw data of three orthogonal planes centered on it. We propose a bootstrap re-sampling approach to enhance the training in our highly imbalanced data. The proposed method successfully detects 17G and 22G needles with a single trained network, showing a robust generalized approach. Extensive ex-vivo evaluations on 3D ultrasound datasets of chicken breast show 25% increase in F1-score over the state-of-the-art feature-based method. Furthermore, very short needles inserted for only 5 mm in the volume are detected with tip localization errors of $${<}$$0.5 mm, indicating that the tip is always visible in the detected plane." @default.
- W2752207938 created "2017-09-15" @default.
- W2752207938 creator A5012511456 @default.
- W2752207938 creator A5060435886 @default.
- W2752207938 creator A5064269121 @default.
- W2752207938 creator A5066354426 @default.
- W2752207938 creator A5080071089 @default.
- W2752207938 creator A5085030425 @default.
- W2752207938 date "2017-01-01" @default.
- W2752207938 modified "2023-10-17" @default.
- W2752207938 title "Improving Needle Detection in 3D Ultrasound Using Orthogonal-Plane Convolutional Networks" @default.
- W2752207938 cites W1915761309 @default.
- W2752207938 cites W1978761423 @default.
- W2752207938 cites W2085261163 @default.
- W2752207938 cites W2111546571 @default.
- W2752207938 cites W2141941142 @default.
- W2752207938 cites W2170295503 @default.
- W2752207938 cites W2217896605 @default.
- W2752207938 cites W2523856253 @default.
- W2752207938 cites W2524877613 @default.
- W2752207938 cites W2548299437 @default.
- W2752207938 doi "https://doi.org/10.1007/978-3-319-66185-8_69" @default.
- W2752207938 hasPublicationYear "2017" @default.
- W2752207938 type Work @default.
- W2752207938 sameAs 2752207938 @default.
- W2752207938 citedByCount "15" @default.
- W2752207938 countsByYear W27522079382018 @default.
- W2752207938 countsByYear W27522079382019 @default.
- W2752207938 countsByYear W27522079382020 @default.
- W2752207938 countsByYear W27522079382022 @default.
- W2752207938 countsByYear W27522079382023 @default.
- W2752207938 crossrefType "book-chapter" @default.
- W2752207938 hasAuthorship W2752207938A5012511456 @default.
- W2752207938 hasAuthorship W2752207938A5060435886 @default.
- W2752207938 hasAuthorship W2752207938A5064269121 @default.
- W2752207938 hasAuthorship W2752207938A5066354426 @default.
- W2752207938 hasAuthorship W2752207938A5080071089 @default.
- W2752207938 hasAuthorship W2752207938A5085030425 @default.
- W2752207938 hasConcept C121332964 @default.
- W2752207938 hasConcept C126838900 @default.
- W2752207938 hasConcept C138885662 @default.
- W2752207938 hasConcept C143753070 @default.
- W2752207938 hasConcept C153180895 @default.
- W2752207938 hasConcept C154945302 @default.
- W2752207938 hasConcept C20556612 @default.
- W2752207938 hasConcept C2776401178 @default.
- W2752207938 hasConcept C2780170424 @default.
- W2752207938 hasConcept C31972630 @default.
- W2752207938 hasConcept C41008148 @default.
- W2752207938 hasConcept C41895202 @default.
- W2752207938 hasConcept C54170458 @default.
- W2752207938 hasConcept C62520636 @default.
- W2752207938 hasConcept C71924100 @default.
- W2752207938 hasConcept C81363708 @default.
- W2752207938 hasConceptScore W2752207938C121332964 @default.
- W2752207938 hasConceptScore W2752207938C126838900 @default.
- W2752207938 hasConceptScore W2752207938C138885662 @default.
- W2752207938 hasConceptScore W2752207938C143753070 @default.
- W2752207938 hasConceptScore W2752207938C153180895 @default.
- W2752207938 hasConceptScore W2752207938C154945302 @default.
- W2752207938 hasConceptScore W2752207938C20556612 @default.
- W2752207938 hasConceptScore W2752207938C2776401178 @default.
- W2752207938 hasConceptScore W2752207938C2780170424 @default.
- W2752207938 hasConceptScore W2752207938C31972630 @default.
- W2752207938 hasConceptScore W2752207938C41008148 @default.
- W2752207938 hasConceptScore W2752207938C41895202 @default.
- W2752207938 hasConceptScore W2752207938C54170458 @default.
- W2752207938 hasConceptScore W2752207938C62520636 @default.
- W2752207938 hasConceptScore W2752207938C71924100 @default.
- W2752207938 hasConceptScore W2752207938C81363708 @default.
- W2752207938 hasLocation W27522079381 @default.
- W2752207938 hasOpenAccess W2752207938 @default.
- W2752207938 hasPrimaryLocation W27522079381 @default.
- W2752207938 hasRelatedWork W1504288058 @default.
- W2752207938 hasRelatedWork W2017205855 @default.
- W2752207938 hasRelatedWork W2048505601 @default.
- W2752207938 hasRelatedWork W2160739731 @default.
- W2752207938 hasRelatedWork W2167293474 @default.
- W2752207938 hasRelatedWork W2331674254 @default.
- W2752207938 hasRelatedWork W2685530223 @default.
- W2752207938 hasRelatedWork W2979079341 @default.
- W2752207938 hasRelatedWork W3042897387 @default.
- W2752207938 hasRelatedWork W2494681155 @default.
- W2752207938 isParatext "false" @default.
- W2752207938 isRetracted "false" @default.
- W2752207938 magId "2752207938" @default.
- W2752207938 workType "book-chapter" @default.