Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752352959> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2752352959 endingPage "95" @default.
- W2752352959 startingPage "90" @default.
- W2752352959 abstract "Abstract Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) learning. It imposes the smoothness constraint over a constructed manifold graph, and its performance largely depends on such graph. However, 1) The manifold graph is usually pre-constructed before classification, and fixed during the classification learning process. As a result, independent with the subsequent classification, the graph does not necessarily benefit the classification performance. 2) There are parameters needing tuning in the graph construction, while parameter selection in semi-supervised learning is still an open problem currently, which sets up another barrier for constructing a “well-performing” manifold graph benefiting the performance. To address those issues, we develop a novel semi-supervised manifold regularization with adaptive graph (AGMR for short) in this paper by integrating the graph construction and classification learning into a unified framework. In this way, the manifold graph along with its parameters will be optimized in learning rather than pre-defined, consequently, it will be adaptive to the classification, and benefit the performance. Further, by adopting the entropy and sparse constraints respectively for the graph weights, we derive two specific methods called AGMR_entropy and AGMR_sparse, respectively. Our empirical results show the competitiveness of those AGMRs compared to MR and some of its variants." @default.
- W2752352959 created "2017-09-15" @default.
- W2752352959 creator A5020135796 @default.
- W2752352959 creator A5029012645 @default.
- W2752352959 creator A5056518947 @default.
- W2752352959 creator A5057436798 @default.
- W2752352959 creator A5070783668 @default.
- W2752352959 creator A5082446723 @default.
- W2752352959 date "2017-10-01" @default.
- W2752352959 modified "2023-10-15" @default.
- W2752352959 title "Semi-supervised manifold regularization with adaptive graph construction" @default.
- W2752352959 cites W1902027874 @default.
- W2752352959 cites W1964590153 @default.
- W2752352959 cites W1967825168 @default.
- W2752352959 cites W1981791883 @default.
- W2752352959 cites W1997029057 @default.
- W2752352959 cites W2085443648 @default.
- W2752352959 cites W2097703723 @default.
- W2752352959 cites W2130941826 @default.
- W2752352959 cites W2145376937 @default.
- W2752352959 cites W2145725490 @default.
- W2752352959 doi "https://doi.org/10.1016/j.patrec.2017.09.004" @default.
- W2752352959 hasPublicationYear "2017" @default.
- W2752352959 type Work @default.
- W2752352959 sameAs 2752352959 @default.
- W2752352959 citedByCount "12" @default.
- W2752352959 countsByYear W27523529592019 @default.
- W2752352959 countsByYear W27523529592020 @default.
- W2752352959 countsByYear W27523529592021 @default.
- W2752352959 countsByYear W27523529592022 @default.
- W2752352959 countsByYear W27523529592023 @default.
- W2752352959 crossrefType "journal-article" @default.
- W2752352959 hasAuthorship W2752352959A5020135796 @default.
- W2752352959 hasAuthorship W2752352959A5029012645 @default.
- W2752352959 hasAuthorship W2752352959A5056518947 @default.
- W2752352959 hasAuthorship W2752352959A5057436798 @default.
- W2752352959 hasAuthorship W2752352959A5070783668 @default.
- W2752352959 hasAuthorship W2752352959A5082446723 @default.
- W2752352959 hasConcept C11413529 @default.
- W2752352959 hasConcept C126255220 @default.
- W2752352959 hasConcept C127413603 @default.
- W2752352959 hasConcept C132525143 @default.
- W2752352959 hasConcept C151876577 @default.
- W2752352959 hasConcept C153120616 @default.
- W2752352959 hasConcept C153180895 @default.
- W2752352959 hasConcept C154945302 @default.
- W2752352959 hasConcept C2776135515 @default.
- W2752352959 hasConcept C33923547 @default.
- W2752352959 hasConcept C41008148 @default.
- W2752352959 hasConcept C529865628 @default.
- W2752352959 hasConcept C70518039 @default.
- W2752352959 hasConcept C78519656 @default.
- W2752352959 hasConcept C80444323 @default.
- W2752352959 hasConceptScore W2752352959C11413529 @default.
- W2752352959 hasConceptScore W2752352959C126255220 @default.
- W2752352959 hasConceptScore W2752352959C127413603 @default.
- W2752352959 hasConceptScore W2752352959C132525143 @default.
- W2752352959 hasConceptScore W2752352959C151876577 @default.
- W2752352959 hasConceptScore W2752352959C153120616 @default.
- W2752352959 hasConceptScore W2752352959C153180895 @default.
- W2752352959 hasConceptScore W2752352959C154945302 @default.
- W2752352959 hasConceptScore W2752352959C2776135515 @default.
- W2752352959 hasConceptScore W2752352959C33923547 @default.
- W2752352959 hasConceptScore W2752352959C41008148 @default.
- W2752352959 hasConceptScore W2752352959C529865628 @default.
- W2752352959 hasConceptScore W2752352959C70518039 @default.
- W2752352959 hasConceptScore W2752352959C78519656 @default.
- W2752352959 hasConceptScore W2752352959C80444323 @default.
- W2752352959 hasFunder F4320321001 @default.
- W2752352959 hasLocation W27523529591 @default.
- W2752352959 hasOpenAccess W2752352959 @default.
- W2752352959 hasPrimaryLocation W27523529591 @default.
- W2752352959 hasRelatedWork W155079911 @default.
- W2752352959 hasRelatedWork W1588616767 @default.
- W2752352959 hasRelatedWork W2024891754 @default.
- W2752352959 hasRelatedWork W2128026831 @default.
- W2752352959 hasRelatedWork W2149766789 @default.
- W2752352959 hasRelatedWork W2153107493 @default.
- W2752352959 hasRelatedWork W2170036858 @default.
- W2752352959 hasRelatedWork W2384281277 @default.
- W2752352959 hasRelatedWork W2394040199 @default.
- W2752352959 hasRelatedWork W2965535361 @default.
- W2752352959 hasVolume "98" @default.
- W2752352959 isParatext "false" @default.
- W2752352959 isRetracted "false" @default.
- W2752352959 magId "2752352959" @default.
- W2752352959 workType "article" @default.