Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752457006> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2752457006 endingPage "1854011" @default.
- W2752457006 startingPage "1854011" @default.
- W2752457006 abstract "In the actual cotton planting environment, rapid change of light within a day, reflection from different backgrounds and different weather conditions can affect the imaging of cotton. Therefore, the crop object segmentation is difficult. Images which were captured in 12 natural scenes during cotton planting, including three weather conditions, such as sunny, cloudy and rainy and four soil cover conditions, such as white mulch film, black mulch film, straw and bare soil were regarded as the research objects. This paper presents the cotton leaf segmentation method based on Immune algorithm and pulse coupled neural networks (PCNN). First, 17 color components of white mulch film, black mulch film, straw, bare soil and cotton under the conditions of sunny, cloudy and rainy days were analyzed by using statistical method. Three high feasible and anti-light color components were selected by histogram statistical with mean gray value. Second, the optimal parameters of PCNN model and the optimal number of iterations were determined by using immune algorithm optimization theory, and the method in this paper was tested by using 1200 cotton images which were captured under 12 natural scenes. Finally, the test results showed that this method can distinguish cotton target region from soil and other background regions. Meanwhile, for reflection of mulch film, crop shadow, dark light, complex background, noise, etc. which are often appeared in natural scene, four image segmentation methods of Otsu algorithm, [Formula: see text]-Means algorithm, FCM algorithm and PCNN were compared with the proposed method in this paper. The segmentation result showed that the proposed method has good resistance to change of light and complex background. The average [Formula: see text] of the proposed method is 6.5%, significantly lower than that of other four methods and the performance is better than other four methods. This method can segment cotton images in different weather conditions and different backgrounds accurately under complex natural conditions. It will contribute to the subsequent growth status determination and pest diagnosis of cotton." @default.
- W2752457006 created "2017-09-15" @default.
- W2752457006 creator A5035958705 @default.
- W2752457006 creator A5038133423 @default.
- W2752457006 creator A5051792416 @default.
- W2752457006 creator A5064090766 @default.
- W2752457006 creator A5086688453 @default.
- W2752457006 date "2018-01-03" @default.
- W2752457006 modified "2023-09-27" @default.
- W2752457006 title "Robust Image Segmentation Method for Cotton Leaf Under Natural Conditions Based on Immune Algorithm and PCNN Algorithm" @default.
- W2752457006 cites W1181899764 @default.
- W2752457006 cites W1966047328 @default.
- W2752457006 cites W1968378357 @default.
- W2752457006 cites W1977435085 @default.
- W2752457006 cites W1998660187 @default.
- W2752457006 cites W2000689765 @default.
- W2752457006 cites W2014408679 @default.
- W2752457006 cites W2016193203 @default.
- W2752457006 cites W2023057971 @default.
- W2752457006 cites W2034794296 @default.
- W2752457006 cites W2044651338 @default.
- W2752457006 cites W2048367757 @default.
- W2752457006 cites W2048750869 @default.
- W2752457006 cites W2055485030 @default.
- W2752457006 cites W2078351586 @default.
- W2752457006 cites W2091575950 @default.
- W2752457006 cites W2144157054 @default.
- W2752457006 cites W2158243933 @default.
- W2752457006 cites W2205610530 @default.
- W2752457006 cites W2398045199 @default.
- W2752457006 doi "https://doi.org/10.1142/s0218001418540113" @default.
- W2752457006 hasPublicationYear "2018" @default.
- W2752457006 type Work @default.
- W2752457006 sameAs 2752457006 @default.
- W2752457006 citedByCount "6" @default.
- W2752457006 countsByYear W27524570062018 @default.
- W2752457006 countsByYear W27524570062019 @default.
- W2752457006 countsByYear W27524570062020 @default.
- W2752457006 countsByYear W27524570062022 @default.
- W2752457006 crossrefType "journal-article" @default.
- W2752457006 hasAuthorship W2752457006A5035958705 @default.
- W2752457006 hasAuthorship W2752457006A5038133423 @default.
- W2752457006 hasAuthorship W2752457006A5051792416 @default.
- W2752457006 hasAuthorship W2752457006A5064090766 @default.
- W2752457006 hasAuthorship W2752457006A5086688453 @default.
- W2752457006 hasConcept C11413529 @default.
- W2752457006 hasConcept C124504099 @default.
- W2752457006 hasConcept C154945302 @default.
- W2752457006 hasConcept C175092762 @default.
- W2752457006 hasConcept C21729346 @default.
- W2752457006 hasConcept C33923547 @default.
- W2752457006 hasConcept C41008148 @default.
- W2752457006 hasConcept C6557445 @default.
- W2752457006 hasConcept C86803240 @default.
- W2752457006 hasConcept C89600930 @default.
- W2752457006 hasConceptScore W2752457006C11413529 @default.
- W2752457006 hasConceptScore W2752457006C124504099 @default.
- W2752457006 hasConceptScore W2752457006C154945302 @default.
- W2752457006 hasConceptScore W2752457006C175092762 @default.
- W2752457006 hasConceptScore W2752457006C21729346 @default.
- W2752457006 hasConceptScore W2752457006C33923547 @default.
- W2752457006 hasConceptScore W2752457006C41008148 @default.
- W2752457006 hasConceptScore W2752457006C6557445 @default.
- W2752457006 hasConceptScore W2752457006C86803240 @default.
- W2752457006 hasConceptScore W2752457006C89600930 @default.
- W2752457006 hasIssue "05" @default.
- W2752457006 hasLocation W27524570061 @default.
- W2752457006 hasOpenAccess W2752457006 @default.
- W2752457006 hasPrimaryLocation W27524570061 @default.
- W2752457006 hasRelatedWork W2153099358 @default.
- W2752457006 hasRelatedWork W2341724773 @default.
- W2752457006 hasRelatedWork W2350588503 @default.
- W2752457006 hasRelatedWork W2352091405 @default.
- W2752457006 hasRelatedWork W2380956665 @default.
- W2752457006 hasRelatedWork W2748967101 @default.
- W2752457006 hasRelatedWork W3127804355 @default.
- W2752457006 hasRelatedWork W4306937392 @default.
- W2752457006 hasRelatedWork W4321260672 @default.
- W2752457006 hasRelatedWork W4361265312 @default.
- W2752457006 hasVolume "32" @default.
- W2752457006 isParatext "false" @default.
- W2752457006 isRetracted "false" @default.
- W2752457006 magId "2752457006" @default.
- W2752457006 workType "article" @default.