Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752527720> ?p ?o ?g. }
- W2752527720 endingPage "2169" @default.
- W2752527720 startingPage "2147" @default.
- W2752527720 abstract "The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems." @default.
- W2752527720 created "2017-09-15" @default.
- W2752527720 creator A5015567863 @default.
- W2752527720 creator A5091528066 @default.
- W2752527720 date "2018-01-03" @default.
- W2752527720 modified "2023-09-30" @default.
- W2752527720 title "Multilayer Brain Networks" @default.
- W2752527720 cites W1588378840 @default.
- W2752527720 cites W1606375300 @default.
- W2752527720 cites W1821985199 @default.
- W2752527720 cites W1839609872 @default.
- W2752527720 cites W1907418661 @default.
- W2752527720 cites W1967931162 @default.
- W2752527720 cites W1970985728 @default.
- W2752527720 cites W1984994932 @default.
- W2752527720 cites W1992325228 @default.
- W2752527720 cites W1999653836 @default.
- W2752527720 cites W1999934155 @default.
- W2752527720 cites W2004531067 @default.
- W2752527720 cites W2005941514 @default.
- W2752527720 cites W2006739596 @default.
- W2752527720 cites W2008209917 @default.
- W2752527720 cites W2014022174 @default.
- W2752527720 cites W2014219430 @default.
- W2752527720 cites W2037716995 @default.
- W2752527720 cites W2041951497 @default.
- W2752527720 cites W2043783389 @default.
- W2752527720 cites W2045791628 @default.
- W2752527720 cites W2061099285 @default.
- W2752527720 cites W2070722739 @default.
- W2752527720 cites W2074617510 @default.
- W2752527720 cites W2076805502 @default.
- W2752527720 cites W2086243891 @default.
- W2752527720 cites W2087938247 @default.
- W2752527720 cites W2088168551 @default.
- W2752527720 cites W2097271689 @default.
- W2752527720 cites W2123583562 @default.
- W2752527720 cites W2125757815 @default.
- W2752527720 cites W2128314959 @default.
- W2752527720 cites W2131681506 @default.
- W2752527720 cites W2138991775 @default.
- W2752527720 cites W2142029338 @default.
- W2752527720 cites W2143502460 @default.
- W2752527720 cites W2148606196 @default.
- W2752527720 cites W2151936673 @default.
- W2752527720 cites W2155338866 @default.
- W2752527720 cites W2163487866 @default.
- W2752527720 cites W2170702893 @default.
- W2752527720 cites W2207722880 @default.
- W2752527720 cites W2247436149 @default.
- W2752527720 cites W2252566672 @default.
- W2752527720 cites W2282605886 @default.
- W2752527720 cites W2284925975 @default.
- W2752527720 cites W2300732371 @default.
- W2752527720 cites W2321627145 @default.
- W2752527720 cites W2342114889 @default.
- W2752527720 cites W2342709665 @default.
- W2752527720 cites W2379776978 @default.
- W2752527720 cites W2409807130 @default.
- W2752527720 cites W2411622228 @default.
- W2752527720 cites W2412128991 @default.
- W2752527720 cites W2442470680 @default.
- W2752527720 cites W2462991260 @default.
- W2752527720 cites W2505822514 @default.
- W2752527720 cites W2514803758 @default.
- W2752527720 cites W2546798788 @default.
- W2752527720 cites W2556615441 @default.
- W2752527720 cites W2565496127 @default.
- W2752527720 cites W2574346611 @default.
- W2752527720 cites W2582460218 @default.
- W2752527720 cites W2583273159 @default.
- W2752527720 cites W2597055301 @default.
- W2752527720 cites W2598246502 @default.
- W2752527720 cites W2609756498 @default.
- W2752527720 cites W2715545139 @default.
- W2752527720 cites W2743619017 @default.
- W2752527720 cites W2913754613 @default.
- W2752527720 cites W2950258616 @default.
- W2752527720 cites W2962725064 @default.
- W2752527720 cites W2963104673 @default.
- W2752527720 cites W2963728441 @default.
- W2752527720 cites W2963742736 @default.
- W2752527720 cites W2963939350 @default.
- W2752527720 cites W3037826211 @default.
- W2752527720 cites W3098164384 @default.
- W2752527720 cites W3100139064 @default.
- W2752527720 cites W3100808099 @default.
- W2752527720 cites W3102426116 @default.
- W2752527720 cites W3103589660 @default.
- W2752527720 cites W3104267360 @default.
- W2752527720 cites W3106088749 @default.
- W2752527720 cites W3106209931 @default.
- W2752527720 cites W4211091012 @default.
- W2752527720 cites W778374290 @default.
- W2752527720 cites W829099703 @default.
- W2752527720 doi "https://doi.org/10.1007/s00332-017-9436-8" @default.
- W2752527720 hasPublicationYear "2018" @default.
- W2752527720 type Work @default.