Matches in SemOpenAlex for { <https://semopenalex.org/work/W2752912755> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2752912755 endingPage "136" @default.
- W2752912755 startingPage "129" @default.
- W2752912755 abstract "Water consumption by individual pigs can be an interesting indicator of their health. A method using machine vision is proposed to (a) recognise the presence of an individual pig within the drinking zone and (b) analyse the vision images to determine if the pig is drinking. First, isolation of an individual pig within the drinking zone is extracted from the topview of the set of video sequences for group-housed pigs. Next, the distance between the individual pig and the drink nipple is calculated and used to determine whether the individual pig is in contact with the drink nipple. If yes, the colour moments, area, perimeter and other features of the pig are extracted. Then the features are normalised. The individual pig is recognised by computing the Euclidean distance between the pig and the standard sample. The contact time between an individual pig and the drink nipple is used to determine whether the pig is drinking. The pigsty contains 7 pigs and is monitored in real-time, and 140 video clips containing images of the individual pigs while drinking are captured. The correct (drinking) recognition rate for individual pigs is 90.7%. Our method differs from traditional methods in that it avoids any disturbance to the pigs, and it can be used for the recognition of individual pigs within a stress-free environment. Our results can provide a reference point and direction for exploration of other behaviours of topview group-housed pigs." @default.
- W2752912755 created "2017-09-15" @default.
- W2752912755 creator A5019580757 @default.
- W2752912755 creator A5025019663 @default.
- W2752912755 creator A5042767503 @default.
- W2752912755 creator A5057825917 @default.
- W2752912755 creator A5063253432 @default.
- W2752912755 date "2017-11-01" @default.
- W2752912755 modified "2023-10-06" @default.
- W2752912755 title "Recognition and drinking behaviour analysis of individual pigs based on machine vision" @default.
- W2752912755 cites W1967240146 @default.
- W2752912755 cites W1969294188 @default.
- W2752912755 cites W1972544340 @default.
- W2752912755 cites W1977140987 @default.
- W2752912755 cites W1987087490 @default.
- W2752912755 cites W1996548833 @default.
- W2752912755 cites W2000166151 @default.
- W2752912755 cites W2009070949 @default.
- W2752912755 cites W2020611861 @default.
- W2752912755 cites W2047495463 @default.
- W2752912755 cites W2050371290 @default.
- W2752912755 cites W2053289930 @default.
- W2752912755 cites W2073855014 @default.
- W2752912755 cites W2091991228 @default.
- W2752912755 cites W2092004232 @default.
- W2752912755 cites W2093310350 @default.
- W2752912755 cites W2101608954 @default.
- W2752912755 cites W210617966 @default.
- W2752912755 cites W2133059825 @default.
- W2752912755 cites W2150177235 @default.
- W2752912755 cites W2156634628 @default.
- W2752912755 doi "https://doi.org/10.1016/j.livsci.2017.09.003" @default.
- W2752912755 hasPublicationYear "2017" @default.
- W2752912755 type Work @default.
- W2752912755 sameAs 2752912755 @default.
- W2752912755 citedByCount "31" @default.
- W2752912755 countsByYear W27529127552018 @default.
- W2752912755 countsByYear W27529127552019 @default.
- W2752912755 countsByYear W27529127552020 @default.
- W2752912755 countsByYear W27529127552021 @default.
- W2752912755 countsByYear W27529127552022 @default.
- W2752912755 countsByYear W27529127552023 @default.
- W2752912755 crossrefType "journal-article" @default.
- W2752912755 hasAuthorship W2752912755A5019580757 @default.
- W2752912755 hasAuthorship W2752912755A5025019663 @default.
- W2752912755 hasAuthorship W2752912755A5042767503 @default.
- W2752912755 hasAuthorship W2752912755A5057825917 @default.
- W2752912755 hasAuthorship W2752912755A5063253432 @default.
- W2752912755 hasConcept C120174047 @default.
- W2752912755 hasConcept C141071460 @default.
- W2752912755 hasConcept C153180895 @default.
- W2752912755 hasConcept C154945302 @default.
- W2752912755 hasConcept C205649164 @default.
- W2752912755 hasConcept C2778134537 @default.
- W2752912755 hasConcept C2778527173 @default.
- W2752912755 hasConcept C41008148 @default.
- W2752912755 hasConcept C71924100 @default.
- W2752912755 hasConcept C97137747 @default.
- W2752912755 hasConceptScore W2752912755C120174047 @default.
- W2752912755 hasConceptScore W2752912755C141071460 @default.
- W2752912755 hasConceptScore W2752912755C153180895 @default.
- W2752912755 hasConceptScore W2752912755C154945302 @default.
- W2752912755 hasConceptScore W2752912755C205649164 @default.
- W2752912755 hasConceptScore W2752912755C2778134537 @default.
- W2752912755 hasConceptScore W2752912755C2778527173 @default.
- W2752912755 hasConceptScore W2752912755C41008148 @default.
- W2752912755 hasConceptScore W2752912755C71924100 @default.
- W2752912755 hasConceptScore W2752912755C97137747 @default.
- W2752912755 hasFunder F4320321001 @default.
- W2752912755 hasLocation W27529127551 @default.
- W2752912755 hasOpenAccess W2752912755 @default.
- W2752912755 hasPrimaryLocation W27529127551 @default.
- W2752912755 hasRelatedWork W1483561551 @default.
- W2752912755 hasRelatedWork W1981015757 @default.
- W2752912755 hasRelatedWork W2335037768 @default.
- W2752912755 hasRelatedWork W2365862391 @default.
- W2752912755 hasRelatedWork W2368987896 @default.
- W2752912755 hasRelatedWork W2588629527 @default.
- W2752912755 hasRelatedWork W2613855078 @default.
- W2752912755 hasRelatedWork W2974128303 @default.
- W2752912755 hasRelatedWork W3113738745 @default.
- W2752912755 hasRelatedWork W2186590995 @default.
- W2752912755 hasVolume "205" @default.
- W2752912755 isParatext "false" @default.
- W2752912755 isRetracted "false" @default.
- W2752912755 magId "2752912755" @default.
- W2752912755 workType "article" @default.