Matches in SemOpenAlex for { <https://semopenalex.org/work/W2753232334> ?p ?o ?g. }
- W2753232334 endingPage "2482" @default.
- W2753232334 startingPage "2472" @default.
- W2753232334 abstract "Recent advances in odour sensors have led to the development of new applications; among them, electronic noses have gained major interest and found successful applications in many fields. An electronic nose is a device composed of an array of odour sensors with sensitivity to a wide range of chemical compounds. Reliable electronic nose systems rely on advanced data processing techniques. Among them, machine learning has become a core technique for electronic nose design. In this document, we describe several machine learning algorithms and compare their performances on different features used in state of the art electronic nose systems." @default.
- W2753232334 created "2017-09-15" @default.
- W2753232334 creator A5006336842 @default.
- W2753232334 creator A5040960179 @default.
- W2753232334 creator A5073880234 @default.
- W2753232334 creator A5081286476 @default.
- W2753232334 creator A5084784016 @default.
- W2753232334 date "2018-02-01" @default.
- W2753232334 modified "2023-10-16" @default.
- W2753232334 title "A review of algorithms for SAW sensors e-nose based volatile compound identification" @default.
- W2753232334 cites W1582684391 @default.
- W2753232334 cites W1814500939 @default.
- W2753232334 cites W1975370218 @default.
- W2753232334 cites W1988349668 @default.
- W2753232334 cites W1990517717 @default.
- W2753232334 cites W2001619934 @default.
- W2753232334 cites W2006463578 @default.
- W2753232334 cites W2008056655 @default.
- W2753232334 cites W2009516535 @default.
- W2753232334 cites W2014269887 @default.
- W2753232334 cites W2025769217 @default.
- W2753232334 cites W2026209437 @default.
- W2753232334 cites W2027549763 @default.
- W2753232334 cites W2028070629 @default.
- W2753232334 cites W2039222602 @default.
- W2753232334 cites W2039619216 @default.
- W2753232334 cites W2041376449 @default.
- W2753232334 cites W2043228294 @default.
- W2753232334 cites W2050125642 @default.
- W2753232334 cites W2052893770 @default.
- W2753232334 cites W2060201916 @default.
- W2753232334 cites W2063872198 @default.
- W2753232334 cites W2073573575 @default.
- W2753232334 cites W2085094006 @default.
- W2753232334 cites W2089213042 @default.
- W2753232334 cites W2089309619 @default.
- W2753232334 cites W2091971808 @default.
- W2753232334 cites W2093560196 @default.
- W2753232334 cites W2105762439 @default.
- W2753232334 cites W2116204925 @default.
- W2753232334 cites W2122841949 @default.
- W2753232334 cites W2123649031 @default.
- W2753232334 cites W2129270900 @default.
- W2753232334 cites W2139598133 @default.
- W2753232334 cites W2152805093 @default.
- W2753232334 cites W2160950035 @default.
- W2753232334 cites W2162749451 @default.
- W2753232334 cites W2162983001 @default.
- W2753232334 cites W2165558283 @default.
- W2753232334 cites W2165899560 @default.
- W2753232334 cites W2166302248 @default.
- W2753232334 cites W2911964244 @default.
- W2753232334 cites W3104887532 @default.
- W2753232334 cites W4236137412 @default.
- W2753232334 cites W4254364339 @default.
- W2753232334 doi "https://doi.org/10.1016/j.snb.2017.09.040" @default.
- W2753232334 hasPublicationYear "2018" @default.
- W2753232334 type Work @default.
- W2753232334 sameAs 2753232334 @default.
- W2753232334 citedByCount "41" @default.
- W2753232334 countsByYear W27532323342017 @default.
- W2753232334 countsByYear W27532323342018 @default.
- W2753232334 countsByYear W27532323342019 @default.
- W2753232334 countsByYear W27532323342020 @default.
- W2753232334 countsByYear W27532323342021 @default.
- W2753232334 countsByYear W27532323342022 @default.
- W2753232334 countsByYear W27532323342023 @default.
- W2753232334 crossrefType "journal-article" @default.
- W2753232334 hasAuthorship W2753232334A5006336842 @default.
- W2753232334 hasAuthorship W2753232334A5040960179 @default.
- W2753232334 hasAuthorship W2753232334A5073880234 @default.
- W2753232334 hasAuthorship W2753232334A5081286476 @default.
- W2753232334 hasAuthorship W2753232334A5084784016 @default.
- W2753232334 hasBestOaLocation W27532323342 @default.
- W2753232334 hasConcept C11413529 @default.
- W2753232334 hasConcept C116834253 @default.
- W2753232334 hasConcept C119857082 @default.
- W2753232334 hasConcept C127413603 @default.
- W2753232334 hasConcept C147789679 @default.
- W2753232334 hasConcept C154945302 @default.
- W2753232334 hasConcept C17525397 @default.
- W2753232334 hasConcept C185592680 @default.
- W2753232334 hasConcept C21200559 @default.
- W2753232334 hasConcept C23895516 @default.
- W2753232334 hasConcept C24326235 @default.
- W2753232334 hasConcept C2984356252 @default.
- W2753232334 hasConcept C41008148 @default.
- W2753232334 hasConcept C59822182 @default.
- W2753232334 hasConcept C86803240 @default.
- W2753232334 hasConceptScore W2753232334C11413529 @default.
- W2753232334 hasConceptScore W2753232334C116834253 @default.
- W2753232334 hasConceptScore W2753232334C119857082 @default.
- W2753232334 hasConceptScore W2753232334C127413603 @default.
- W2753232334 hasConceptScore W2753232334C147789679 @default.
- W2753232334 hasConceptScore W2753232334C154945302 @default.
- W2753232334 hasConceptScore W2753232334C17525397 @default.
- W2753232334 hasConceptScore W2753232334C185592680 @default.
- W2753232334 hasConceptScore W2753232334C21200559 @default.