Matches in SemOpenAlex for { <https://semopenalex.org/work/W2753285824> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2753285824 endingPage "275" @default.
- W2753285824 startingPage "265" @default.
- W2753285824 abstract "Deep Learning is a branch of Machine Learning, which focuses on a set of algorithms that model high-level abstractions in data by using a deep representation of multiple processing layers. The goal of Machine Learning is to map input patterns to output values. This paper will suggest a potential application of Deep Learning Algorithms for the analysis of large amounts of data produced by the research of the Human Microbiome. Humans have coevolved with microbes in the environment, and each body habitat has a unique set of microorganisms (microbiota). The most abundant and well-studied microbiota are found in the gut, where the bacterial density reaches 1011–1012 cells/g in the distal human colon. The number of bacteria in the human gut has been estimated to exceed the number of somatic cells in the body by an order of magnitude and that the biomass of the gut microbiota may reach up to 1.5 kg. This paper presents different methods that have been implemented and tested on a Human Microbiome Dataset. Besides the findings concerning accuracy and runtime, the results suggest that the Deep Learning algorithms could be successfully used to analyze large amounts of Microbiota data." @default.
- W2753285824 created "2017-09-15" @default.
- W2753285824 creator A5003398556 @default.
- W2753285824 creator A5013579901 @default.
- W2753285824 creator A5037300032 @default.
- W2753285824 creator A5060613483 @default.
- W2753285824 creator A5077084542 @default.
- W2753285824 creator A5079405373 @default.
- W2753285824 date "2017-09-02" @default.
- W2753285824 modified "2023-09-27" @default.
- W2753285824 title "Deep Learning Tools for Human Microbiome Big Data" @default.
- W2753285824 cites W1565875270 @default.
- W2753285824 cites W196138137 @default.
- W2753285824 cites W1969062424 @default.
- W2753285824 cites W1994137141 @default.
- W2753285824 cites W1997775823 @default.
- W2753285824 cites W1998960338 @default.
- W2753285824 cites W2019482851 @default.
- W2753285824 cites W2056036338 @default.
- W2753285824 cites W2076063813 @default.
- W2753285824 cites W2079799346 @default.
- W2753285824 cites W2082471133 @default.
- W2753285824 cites W2085646557 @default.
- W2753285824 cites W2089444561 @default.
- W2753285824 cites W2105153491 @default.
- W2753285824 cites W2114453296 @default.
- W2753285824 cites W2142336938 @default.
- W2753285824 cites W2149515881 @default.
- W2753285824 cites W2158038591 @default.
- W2753285824 cites W2162691343 @default.
- W2753285824 cites W2167419149 @default.
- W2753285824 cites W2169276813 @default.
- W2753285824 cites W2280593549 @default.
- W2753285824 cites W2318958074 @default.
- W2753285824 cites W2324519516 @default.
- W2753285824 cites W2461572154 @default.
- W2753285824 cites W2484185931 @default.
- W2753285824 cites W2502089167 @default.
- W2753285824 cites W25115857 @default.
- W2753285824 cites W2919115771 @default.
- W2753285824 doi "https://doi.org/10.1007/978-3-319-62521-8_21" @default.
- W2753285824 hasPublicationYear "2017" @default.
- W2753285824 type Work @default.
- W2753285824 sameAs 2753285824 @default.
- W2753285824 citedByCount "8" @default.
- W2753285824 countsByYear W27532858242018 @default.
- W2753285824 countsByYear W27532858242019 @default.
- W2753285824 countsByYear W27532858242020 @default.
- W2753285824 countsByYear W27532858242021 @default.
- W2753285824 countsByYear W27532858242022 @default.
- W2753285824 crossrefType "book-chapter" @default.
- W2753285824 hasAuthorship W2753285824A5003398556 @default.
- W2753285824 hasAuthorship W2753285824A5013579901 @default.
- W2753285824 hasAuthorship W2753285824A5037300032 @default.
- W2753285824 hasAuthorship W2753285824A5060613483 @default.
- W2753285824 hasAuthorship W2753285824A5077084542 @default.
- W2753285824 hasAuthorship W2753285824A5079405373 @default.
- W2753285824 hasConcept C108583219 @default.
- W2753285824 hasConcept C124101348 @default.
- W2753285824 hasConcept C143121216 @default.
- W2753285824 hasConcept C154945302 @default.
- W2753285824 hasConcept C2522767166 @default.
- W2753285824 hasConcept C41008148 @default.
- W2753285824 hasConcept C60644358 @default.
- W2753285824 hasConcept C75684735 @default.
- W2753285824 hasConcept C86803240 @default.
- W2753285824 hasConcept C91478284 @default.
- W2753285824 hasConceptScore W2753285824C108583219 @default.
- W2753285824 hasConceptScore W2753285824C124101348 @default.
- W2753285824 hasConceptScore W2753285824C143121216 @default.
- W2753285824 hasConceptScore W2753285824C154945302 @default.
- W2753285824 hasConceptScore W2753285824C2522767166 @default.
- W2753285824 hasConceptScore W2753285824C41008148 @default.
- W2753285824 hasConceptScore W2753285824C60644358 @default.
- W2753285824 hasConceptScore W2753285824C75684735 @default.
- W2753285824 hasConceptScore W2753285824C86803240 @default.
- W2753285824 hasConceptScore W2753285824C91478284 @default.
- W2753285824 hasLocation W27532858241 @default.
- W2753285824 hasOpenAccess W2753285824 @default.
- W2753285824 hasPrimaryLocation W27532858241 @default.
- W2753285824 hasRelatedWork W2520046485 @default.
- W2753285824 hasRelatedWork W2744241569 @default.
- W2753285824 hasRelatedWork W3013509985 @default.
- W2753285824 hasRelatedWork W3014300295 @default.
- W2753285824 hasRelatedWork W3198084416 @default.
- W2753285824 hasRelatedWork W3209328123 @default.
- W2753285824 hasRelatedWork W4213286019 @default.
- W2753285824 hasRelatedWork W4252543203 @default.
- W2753285824 hasRelatedWork W4293567684 @default.
- W2753285824 hasRelatedWork W4320068940 @default.
- W2753285824 isParatext "false" @default.
- W2753285824 isRetracted "false" @default.
- W2753285824 magId "2753285824" @default.
- W2753285824 workType "book-chapter" @default.