Matches in SemOpenAlex for { <https://semopenalex.org/work/W2753372987> ?p ?o ?g. }
- W2753372987 endingPage "54" @default.
- W2753372987 startingPage "35" @default.
- W2753372987 abstract "The most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that the Curvelet transform, a new anisotropic and multidirectional transform, can efficiently represent the main structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR) framework, to add feature representations by training a DBN on top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets." @default.
- W2753372987 created "2017-09-15" @default.
- W2753372987 creator A5032871298 @default.
- W2753372987 creator A5057682411 @default.
- W2753372987 creator A5069942030 @default.
- W2753372987 creator A5073594851 @default.
- W2753372987 date "2017-09-04" @default.
- W2753372987 modified "2023-10-12" @default.
- W2753372987 title "A multimodal deep learning framework using local feature representations for face recognition" @default.
- W2753372987 cites W1504134405 @default.
- W2753372987 cites W1545641654 @default.
- W2753372987 cites W1583891911 @default.
- W2753372987 cites W1612175259 @default.
- W2753372987 cites W1657617925 @default.
- W2753372987 cites W1916406603 @default.
- W2753372987 cites W191940071 @default.
- W2753372987 cites W1945705500 @default.
- W2753372987 cites W1964812476 @default.
- W2753372987 cites W1965262908 @default.
- W2753372987 cites W1971014294 @default.
- W2753372987 cites W1974088225 @default.
- W2753372987 cites W1975056068 @default.
- W2753372987 cites W1975780119 @default.
- W2753372987 cites W1979172787 @default.
- W2753372987 cites W1982048725 @default.
- W2753372987 cites W1984809093 @default.
- W2753372987 cites W1985425861 @default.
- W2753372987 cites W1990254706 @default.
- W2753372987 cites W1998292402 @default.
- W2753372987 cites W1998808035 @default.
- W2753372987 cites W1999533590 @default.
- W2753372987 cites W2005286252 @default.
- W2753372987 cites W2015142937 @default.
- W2753372987 cites W2022593932 @default.
- W2753372987 cites W2032884192 @default.
- W2753372987 cites W2033419168 @default.
- W2753372987 cites W2036070282 @default.
- W2753372987 cites W2038622243 @default.
- W2753372987 cites W2040719874 @default.
- W2753372987 cites W2044540390 @default.
- W2753372987 cites W2046301841 @default.
- W2753372987 cites W2056830321 @default.
- W2753372987 cites W2057181855 @default.
- W2753372987 cites W2067439776 @default.
- W2753372987 cites W2076434944 @default.
- W2753372987 cites W2098554822 @default.
- W2753372987 cites W2115528090 @default.
- W2753372987 cites W2128669568 @default.
- W2753372987 cites W2135281232 @default.
- W2753372987 cites W2136922672 @default.
- W2753372987 cites W2145287260 @default.
- W2753372987 cites W2145595732 @default.
- W2753372987 cites W2163400649 @default.
- W2753372987 cites W2168062671 @default.
- W2753372987 cites W2169949947 @default.
- W2753372987 cites W2170080599 @default.
- W2753372987 cites W2196697702 @default.
- W2753372987 cites W2322289814 @default.
- W2753372987 cites W2340460916 @default.
- W2753372987 cites W2344661575 @default.
- W2753372987 cites W2517692200 @default.
- W2753372987 cites W3097096317 @default.
- W2753372987 doi "https://doi.org/10.1007/s00138-017-0870-2" @default.
- W2753372987 hasPublicationYear "2017" @default.
- W2753372987 type Work @default.
- W2753372987 sameAs 2753372987 @default.
- W2753372987 citedByCount "34" @default.
- W2753372987 countsByYear W27533729872017 @default.
- W2753372987 countsByYear W27533729872018 @default.
- W2753372987 countsByYear W27533729872019 @default.
- W2753372987 countsByYear W27533729872020 @default.
- W2753372987 countsByYear W27533729872021 @default.
- W2753372987 countsByYear W27533729872022 @default.
- W2753372987 countsByYear W27533729872023 @default.
- W2753372987 crossrefType "journal-article" @default.
- W2753372987 hasAuthorship W2753372987A5032871298 @default.
- W2753372987 hasAuthorship W2753372987A5057682411 @default.
- W2753372987 hasAuthorship W2753372987A5069942030 @default.
- W2753372987 hasAuthorship W2753372987A5073594851 @default.
- W2753372987 hasBestOaLocation W27533729871 @default.
- W2753372987 hasConcept C108583219 @default.
- W2753372987 hasConcept C115961682 @default.
- W2753372987 hasConcept C131720326 @default.
- W2753372987 hasConcept C138885662 @default.
- W2753372987 hasConcept C144024400 @default.
- W2753372987 hasConcept C153180895 @default.
- W2753372987 hasConcept C154945302 @default.
- W2753372987 hasConcept C196216189 @default.
- W2753372987 hasConcept C2776401178 @default.
- W2753372987 hasConcept C2779304628 @default.
- W2753372987 hasConcept C31510193 @default.
- W2753372987 hasConcept C31972630 @default.
- W2753372987 hasConcept C36289849 @default.
- W2753372987 hasConcept C41008148 @default.
- W2753372987 hasConcept C41895202 @default.
- W2753372987 hasConcept C47432892 @default.
- W2753372987 hasConcept C52622490 @default.
- W2753372987 hasConcept C53533937 @default.