Matches in SemOpenAlex for { <https://semopenalex.org/work/W2753947327> ?p ?o ?g. }
- W2753947327 endingPage "A2755" @default.
- W2753947327 startingPage "A2746" @default.
- W2753947327 abstract "Ultrasonic analysis was used to predict the state of charge and state of health of lithium-ion pouch cells that have been cycled for several hundred cycles. The repeatable ultrasonic trends are reduced to two key metrics: time of flight shift and total signal amplitude, which are then used with voltage data in a supervised machine learning technique to build a model for state of charge (SOC) prediction. Using this model, cell SOC is predicted to ∼1% accuracy for both lithium cobalt oxide and lithium iron phosphate cells. Elastic wave propagation theory is used to explain that the changes in ultrasonic signal are related to changes in the material properties of the active materials (i.e., elastic modulus and density) during cycling. Finally, we show the machine learning model can accurately predict cell state of health with an error ∼1%. This is accomplished by extending the data inputs into the model to include full ultrasonic waveforms at top of charge." @default.
- W2753947327 created "2017-09-25" @default.
- W2753947327 creator A5017805022 @default.
- W2753947327 creator A5033846572 @default.
- W2753947327 creator A5046980986 @default.
- W2753947327 creator A5067040312 @default.
- W2753947327 creator A5074458273 @default.
- W2753947327 creator A5078984036 @default.
- W2753947327 creator A5081339393 @default.
- W2753947327 date "2017-01-01" @default.
- W2753947327 modified "2023-10-01" @default.
- W2753947327 title "State of Charge and State of Health Estimation Using Electrochemical Acoustic Time of Flight Analysis" @default.
- W2753947327 cites W1964357740 @default.
- W2753947327 cites W1970178350 @default.
- W2753947327 cites W1983073634 @default.
- W2753947327 cites W1993107593 @default.
- W2753947327 cites W1997365036 @default.
- W2753947327 cites W2005106696 @default.
- W2753947327 cites W2008160176 @default.
- W2753947327 cites W2038845148 @default.
- W2753947327 cites W2046317813 @default.
- W2753947327 cites W2059073821 @default.
- W2753947327 cites W2065077785 @default.
- W2753947327 cites W2071608862 @default.
- W2753947327 cites W2086284966 @default.
- W2753947327 cites W2094938294 @default.
- W2753947327 cites W2099944709 @default.
- W2753947327 cites W2111028597 @default.
- W2753947327 cites W2145661385 @default.
- W2753947327 cites W2151997147 @default.
- W2753947327 cites W2306551911 @default.
- W2753947327 cites W2510669323 @default.
- W2753947327 cites W2587111496 @default.
- W2753947327 cites W2593788042 @default.
- W2753947327 cites W4300840511 @default.
- W2753947327 doi "https://doi.org/10.1149/2.1411712jes" @default.
- W2753947327 hasPublicationYear "2017" @default.
- W2753947327 type Work @default.
- W2753947327 sameAs 2753947327 @default.
- W2753947327 citedByCount "96" @default.
- W2753947327 countsByYear W27539473272017 @default.
- W2753947327 countsByYear W27539473272018 @default.
- W2753947327 countsByYear W27539473272019 @default.
- W2753947327 countsByYear W27539473272020 @default.
- W2753947327 countsByYear W27539473272021 @default.
- W2753947327 countsByYear W27539473272022 @default.
- W2753947327 countsByYear W27539473272023 @default.
- W2753947327 crossrefType "journal-article" @default.
- W2753947327 hasAuthorship W2753947327A5017805022 @default.
- W2753947327 hasAuthorship W2753947327A5033846572 @default.
- W2753947327 hasAuthorship W2753947327A5046980986 @default.
- W2753947327 hasAuthorship W2753947327A5067040312 @default.
- W2753947327 hasAuthorship W2753947327A5074458273 @default.
- W2753947327 hasAuthorship W2753947327A5078984036 @default.
- W2753947327 hasAuthorship W2753947327A5081339393 @default.
- W2753947327 hasBestOaLocation W27539473271 @default.
- W2753947327 hasConcept C113196181 @default.
- W2753947327 hasConcept C11413529 @default.
- W2753947327 hasConcept C119599485 @default.
- W2753947327 hasConcept C120665830 @default.
- W2753947327 hasConcept C121332964 @default.
- W2753947327 hasConcept C127413603 @default.
- W2753947327 hasConcept C134018914 @default.
- W2753947327 hasConcept C147789679 @default.
- W2753947327 hasConcept C163258240 @default.
- W2753947327 hasConcept C165801399 @default.
- W2753947327 hasConcept C17525397 @default.
- W2753947327 hasConcept C180205008 @default.
- W2753947327 hasConcept C185592680 @default.
- W2753947327 hasConcept C192562407 @default.
- W2753947327 hasConcept C197424946 @default.
- W2753947327 hasConcept C199360897 @default.
- W2753947327 hasConcept C24890656 @default.
- W2753947327 hasConcept C2776582896 @default.
- W2753947327 hasConcept C2778541603 @default.
- W2753947327 hasConcept C2779843651 @default.
- W2753947327 hasConcept C30475298 @default.
- W2753947327 hasConcept C41008148 @default.
- W2753947327 hasConcept C43617362 @default.
- W2753947327 hasConcept C52859227 @default.
- W2753947327 hasConcept C555008776 @default.
- W2753947327 hasConcept C71924100 @default.
- W2753947327 hasConcept C81288441 @default.
- W2753947327 hasConcept C97355855 @default.
- W2753947327 hasConceptScore W2753947327C113196181 @default.
- W2753947327 hasConceptScore W2753947327C11413529 @default.
- W2753947327 hasConceptScore W2753947327C119599485 @default.
- W2753947327 hasConceptScore W2753947327C120665830 @default.
- W2753947327 hasConceptScore W2753947327C121332964 @default.
- W2753947327 hasConceptScore W2753947327C127413603 @default.
- W2753947327 hasConceptScore W2753947327C134018914 @default.
- W2753947327 hasConceptScore W2753947327C147789679 @default.
- W2753947327 hasConceptScore W2753947327C163258240 @default.
- W2753947327 hasConceptScore W2753947327C165801399 @default.
- W2753947327 hasConceptScore W2753947327C17525397 @default.
- W2753947327 hasConceptScore W2753947327C180205008 @default.
- W2753947327 hasConceptScore W2753947327C185592680 @default.
- W2753947327 hasConceptScore W2753947327C192562407 @default.