Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754068056> ?p ?o ?g. }
- W2754068056 abstract "Spatially localized deformation components are very useful for shape analysis and synthesis in 3D geometry processing. Several methods have recently been developed, with an aim to extract intuitive and interpretable deformation components. However, these techniques suffer from fundamental limitations especially for meshes with noise or large-scale deformations, and may not always be able to identify important deformation components. In this paper we propose a novel mesh-based autoencoder architecture that is able to cope with meshes with irregular topology. We introduce sparse regularization in this framework, which along with convolutional operations, helps localize deformations. Our framework is capable of extracting localized deformation components from mesh data sets with large-scale deformations and is robust to noise. It also provides a nonlinear approach to reconstruction of meshes using the extracted basis, which is more effective than the current linear combination approach. Extensive experiments show that our method outperforms state-of-the-art methods in both qualitative and quantitative evaluations." @default.
- W2754068056 created "2017-09-25" @default.
- W2754068056 creator A5014911195 @default.
- W2754068056 creator A5035528139 @default.
- W2754068056 creator A5067850699 @default.
- W2754068056 creator A5072139431 @default.
- W2754068056 creator A5087211534 @default.
- W2754068056 date "2017-09-13" @default.
- W2754068056 modified "2023-10-17" @default.
- W2754068056 title "Mesh-based Autoencoders for Localized Deformation Component Analysis" @default.
- W2754068056 cites W1629010235 @default.
- W2754068056 cites W1662382123 @default.
- W2754068056 cites W1920022804 @default.
- W2754068056 cites W1975900269 @default.
- W2754068056 cites W1981784948 @default.
- W2754068056 cites W1989191365 @default.
- W2754068056 cites W2016772237 @default.
- W2754068056 cites W2023134678 @default.
- W2754068056 cites W2106715340 @default.
- W2754068056 cites W2118080926 @default.
- W2754068056 cites W2122007052 @default.
- W2754068056 cites W2122578066 @default.
- W2754068056 cites W2134389879 @default.
- W2754068056 cites W2160793724 @default.
- W2754068056 cites W2161677718 @default.
- W2754068056 cites W2161738670 @default.
- W2754068056 cites W2211722331 @default.
- W2754068056 cites W2254644702 @default.
- W2754068056 cites W2335364074 @default.
- W2754068056 cites W2338532005 @default.
- W2754068056 cites W2342277278 @default.
- W2754068056 cites W2398467116 @default.
- W2754068056 cites W2404723690 @default.
- W2754068056 cites W2406128552 @default.
- W2754068056 cites W2419474014 @default.
- W2754068056 cites W2483862638 @default.
- W2754068056 cites W2546066744 @default.
- W2754068056 cites W2554180564 @default.
- W2754068056 cites W2612843093 @default.
- W2754068056 cites W2728326942 @default.
- W2754068056 cites W2753127912 @default.
- W2754068056 cites W2949896890 @default.
- W2754068056 cites W2950701417 @default.
- W2754068056 cites W2950757084 @default.
- W2754068056 cites W2951357726 @default.
- W2754068056 cites W2952789225 @default.
- W2754068056 cites W2963121797 @default.
- W2754068056 cites W2963333168 @default.
- W2754068056 cites W2964121744 @default.
- W2754068056 cites W2964321699 @default.
- W2754068056 cites W637153065 @default.
- W2754068056 doi "https://doi.org/10.48550/arxiv.1709.04304" @default.
- W2754068056 hasPublicationYear "2017" @default.
- W2754068056 type Work @default.
- W2754068056 sameAs 2754068056 @default.
- W2754068056 citedByCount "2" @default.
- W2754068056 countsByYear W27540680562019 @default.
- W2754068056 countsByYear W27540680562021 @default.
- W2754068056 crossrefType "posted-content" @default.
- W2754068056 hasAuthorship W2754068056A5014911195 @default.
- W2754068056 hasAuthorship W2754068056A5035528139 @default.
- W2754068056 hasAuthorship W2754068056A5067850699 @default.
- W2754068056 hasAuthorship W2754068056A5072139431 @default.
- W2754068056 hasAuthorship W2754068056A5087211534 @default.
- W2754068056 hasBestOaLocation W27540680561 @default.
- W2754068056 hasConcept C101738243 @default.
- W2754068056 hasConcept C108583219 @default.
- W2754068056 hasConcept C11413529 @default.
- W2754068056 hasConcept C114614502 @default.
- W2754068056 hasConcept C115961682 @default.
- W2754068056 hasConcept C121332964 @default.
- W2754068056 hasConcept C121684516 @default.
- W2754068056 hasConcept C12426560 @default.
- W2754068056 hasConcept C153180895 @default.
- W2754068056 hasConcept C153294291 @default.
- W2754068056 hasConcept C154945302 @default.
- W2754068056 hasConcept C168167062 @default.
- W2754068056 hasConcept C184720557 @default.
- W2754068056 hasConcept C204366326 @default.
- W2754068056 hasConcept C2524010 @default.
- W2754068056 hasConcept C2776135515 @default.
- W2754068056 hasConcept C2779521785 @default.
- W2754068056 hasConcept C31487907 @default.
- W2754068056 hasConcept C33923547 @default.
- W2754068056 hasConcept C41008148 @default.
- W2754068056 hasConcept C97355855 @default.
- W2754068056 hasConcept C99498987 @default.
- W2754068056 hasConceptScore W2754068056C101738243 @default.
- W2754068056 hasConceptScore W2754068056C108583219 @default.
- W2754068056 hasConceptScore W2754068056C11413529 @default.
- W2754068056 hasConceptScore W2754068056C114614502 @default.
- W2754068056 hasConceptScore W2754068056C115961682 @default.
- W2754068056 hasConceptScore W2754068056C121332964 @default.
- W2754068056 hasConceptScore W2754068056C121684516 @default.
- W2754068056 hasConceptScore W2754068056C12426560 @default.
- W2754068056 hasConceptScore W2754068056C153180895 @default.
- W2754068056 hasConceptScore W2754068056C153294291 @default.
- W2754068056 hasConceptScore W2754068056C154945302 @default.
- W2754068056 hasConceptScore W2754068056C168167062 @default.
- W2754068056 hasConceptScore W2754068056C184720557 @default.