Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754157411> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2754157411 abstract "Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors." @default.
- W2754157411 created "2017-09-25" @default.
- W2754157411 creator A5032318952 @default.
- W2754157411 creator A5052662150 @default.
- W2754157411 creator A5064918194 @default.
- W2754157411 date "2017-09-25" @default.
- W2754157411 modified "2023-10-18" @default.
- W2754157411 title "Reduction of metal artifacts in x-ray CT images using a convolutional neural network" @default.
- W2754157411 cites W1974638536 @default.
- W2754157411 cites W1992705935 @default.
- W2754157411 cites W1996992165 @default.
- W2754157411 cites W2023160828 @default.
- W2754157411 cites W2041616298 @default.
- W2754157411 cites W2051027617 @default.
- W2754157411 cites W2079127706 @default.
- W2754157411 cites W2079938350 @default.
- W2754157411 cites W2095757123 @default.
- W2754157411 cites W2098494036 @default.
- W2754157411 cites W2111496814 @default.
- W2754157411 cites W2129598921 @default.
- W2754157411 cites W2135363834 @default.
- W2754157411 cites W2143204661 @default.
- W2754157411 cites W2154129661 @default.
- W2754157411 cites W2157833176 @default.
- W2754157411 cites W2160416946 @default.
- W2754157411 cites W2168730277 @default.
- W2754157411 cites W2171409947 @default.
- W2754157411 cites W2278475848 @default.
- W2754157411 cites W2520016695 @default.
- W2754157411 cites W2520526731 @default.
- W2754157411 cites W2570202822 @default.
- W2754157411 doi "https://doi.org/10.1117/12.2275592" @default.
- W2754157411 hasPublicationYear "2017" @default.
- W2754157411 type Work @default.
- W2754157411 sameAs 2754157411 @default.
- W2754157411 citedByCount "7" @default.
- W2754157411 countsByYear W27541574112019 @default.
- W2754157411 countsByYear W27541574112020 @default.
- W2754157411 countsByYear W27541574112021 @default.
- W2754157411 countsByYear W27541574112022 @default.
- W2754157411 countsByYear W27541574112023 @default.
- W2754157411 crossrefType "proceedings-article" @default.
- W2754157411 hasAuthorship W2754157411A5032318952 @default.
- W2754157411 hasAuthorship W2754157411A5052662150 @default.
- W2754157411 hasAuthorship W2754157411A5064918194 @default.
- W2754157411 hasConcept C111335779 @default.
- W2754157411 hasConcept C115961682 @default.
- W2754157411 hasConcept C141379421 @default.
- W2754157411 hasConcept C153180895 @default.
- W2754157411 hasConcept C154945302 @default.
- W2754157411 hasConcept C2524010 @default.
- W2754157411 hasConcept C2779010991 @default.
- W2754157411 hasConcept C31972630 @default.
- W2754157411 hasConcept C33923547 @default.
- W2754157411 hasConcept C41008148 @default.
- W2754157411 hasConcept C81363708 @default.
- W2754157411 hasConceptScore W2754157411C111335779 @default.
- W2754157411 hasConceptScore W2754157411C115961682 @default.
- W2754157411 hasConceptScore W2754157411C141379421 @default.
- W2754157411 hasConceptScore W2754157411C153180895 @default.
- W2754157411 hasConceptScore W2754157411C154945302 @default.
- W2754157411 hasConceptScore W2754157411C2524010 @default.
- W2754157411 hasConceptScore W2754157411C2779010991 @default.
- W2754157411 hasConceptScore W2754157411C31972630 @default.
- W2754157411 hasConceptScore W2754157411C33923547 @default.
- W2754157411 hasConceptScore W2754157411C41008148 @default.
- W2754157411 hasConceptScore W2754157411C81363708 @default.
- W2754157411 hasLocation W27541574111 @default.
- W2754157411 hasOpenAccess W2754157411 @default.
- W2754157411 hasPrimaryLocation W27541574111 @default.
- W2754157411 hasRelatedWork W2077219921 @default.
- W2754157411 hasRelatedWork W2130228941 @default.
- W2754157411 hasRelatedWork W2161229648 @default.
- W2754157411 hasRelatedWork W2517246325 @default.
- W2754157411 hasRelatedWork W2748454020 @default.
- W2754157411 hasRelatedWork W2767651786 @default.
- W2754157411 hasRelatedWork W2912288872 @default.
- W2754157411 hasRelatedWork W2993674027 @default.
- W2754157411 hasRelatedWork W4210427169 @default.
- W2754157411 hasRelatedWork W564581980 @default.
- W2754157411 isParatext "false" @default.
- W2754157411 isRetracted "false" @default.
- W2754157411 magId "2754157411" @default.
- W2754157411 workType "article" @default.