Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754408748> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2754408748 abstract "Recent developments in data mining and machine learning have helped to solve many issues in prediction and recommendation. In this project, we run a comprehensive study on individual behavior patterns from call detail records (CDR) data to predict tourists' future stops. Multiple classification algorithms are employed, including Decision Tree, Random Forest, Neural Network, Naive Bayes and SVM. In addition, a Recurrent Neural Network-Long Short Term Memory (LSTM) that is ordinarily applied to language inference problems is tested. Surprisingly, we find that LSTM provides us with the best prediction (94.8%), while Random Forest/Neural Network give the second best (85%). Our investigation suggests that the memory-dependence property of LSTM architecture gives it great expressive power to model our time-series location data, making it an outstanding classifier." @default.
- W2754408748 created "2017-09-25" @default.
- W2754408748 creator A5014640639 @default.
- W2754408748 creator A5020311464 @default.
- W2754408748 creator A5041094921 @default.
- W2754408748 creator A5046281605 @default.
- W2754408748 creator A5081284390 @default.
- W2754408748 date "2017-06-01" @default.
- W2754408748 modified "2023-09-23" @default.
- W2754408748 title "Comprehensive Predictions of Tourists' Next Visit Location Based on Call Detail Records Using Machine Learning and Deep Learning Methods" @default.
- W2754408748 cites W1965088854 @default.
- W2754408748 cites W2009155608 @default.
- W2754408748 cites W2023445980 @default.
- W2754408748 cites W2151968358 @default.
- W2754408748 doi "https://doi.org/10.1109/bigdatacongress.2017.10" @default.
- W2754408748 hasPublicationYear "2017" @default.
- W2754408748 type Work @default.
- W2754408748 sameAs 2754408748 @default.
- W2754408748 citedByCount "18" @default.
- W2754408748 countsByYear W27544087482018 @default.
- W2754408748 countsByYear W27544087482019 @default.
- W2754408748 countsByYear W27544087482020 @default.
- W2754408748 countsByYear W27544087482022 @default.
- W2754408748 countsByYear W27544087482023 @default.
- W2754408748 crossrefType "proceedings-article" @default.
- W2754408748 hasAuthorship W2754408748A5014640639 @default.
- W2754408748 hasAuthorship W2754408748A5020311464 @default.
- W2754408748 hasAuthorship W2754408748A5041094921 @default.
- W2754408748 hasAuthorship W2754408748A5046281605 @default.
- W2754408748 hasAuthorship W2754408748A5081284390 @default.
- W2754408748 hasConcept C108583219 @default.
- W2754408748 hasConcept C119857082 @default.
- W2754408748 hasConcept C12267149 @default.
- W2754408748 hasConcept C124101348 @default.
- W2754408748 hasConcept C147168706 @default.
- W2754408748 hasConcept C151406439 @default.
- W2754408748 hasConcept C154945302 @default.
- W2754408748 hasConcept C169258074 @default.
- W2754408748 hasConcept C2776214188 @default.
- W2754408748 hasConcept C41008148 @default.
- W2754408748 hasConcept C50644808 @default.
- W2754408748 hasConcept C52001869 @default.
- W2754408748 hasConcept C84525736 @default.
- W2754408748 hasConcept C95623464 @default.
- W2754408748 hasConceptScore W2754408748C108583219 @default.
- W2754408748 hasConceptScore W2754408748C119857082 @default.
- W2754408748 hasConceptScore W2754408748C12267149 @default.
- W2754408748 hasConceptScore W2754408748C124101348 @default.
- W2754408748 hasConceptScore W2754408748C147168706 @default.
- W2754408748 hasConceptScore W2754408748C151406439 @default.
- W2754408748 hasConceptScore W2754408748C154945302 @default.
- W2754408748 hasConceptScore W2754408748C169258074 @default.
- W2754408748 hasConceptScore W2754408748C2776214188 @default.
- W2754408748 hasConceptScore W2754408748C41008148 @default.
- W2754408748 hasConceptScore W2754408748C50644808 @default.
- W2754408748 hasConceptScore W2754408748C52001869 @default.
- W2754408748 hasConceptScore W2754408748C84525736 @default.
- W2754408748 hasConceptScore W2754408748C95623464 @default.
- W2754408748 hasLocation W27544087481 @default.
- W2754408748 hasOpenAccess W2754408748 @default.
- W2754408748 hasPrimaryLocation W27544087481 @default.
- W2754408748 hasRelatedWork W2021913068 @default.
- W2754408748 hasRelatedWork W2037443622 @default.
- W2754408748 hasRelatedWork W2094280567 @default.
- W2754408748 hasRelatedWork W2120502732 @default.
- W2754408748 hasRelatedWork W2122045251 @default.
- W2754408748 hasRelatedWork W2123546507 @default.
- W2754408748 hasRelatedWork W2131490903 @default.
- W2754408748 hasRelatedWork W2132796678 @default.
- W2754408748 hasRelatedWork W2147623823 @default.
- W2754408748 hasRelatedWork W2150073440 @default.
- W2754408748 hasRelatedWork W2220384803 @default.
- W2754408748 hasRelatedWork W2547480331 @default.
- W2754408748 hasRelatedWork W2766158373 @default.
- W2754408748 hasRelatedWork W2786230937 @default.
- W2754408748 hasRelatedWork W3010604878 @default.
- W2754408748 hasRelatedWork W3027128361 @default.
- W2754408748 hasRelatedWork W3154699120 @default.
- W2754408748 hasRelatedWork W3158068958 @default.
- W2754408748 hasRelatedWork W3184024203 @default.
- W2754408748 hasRelatedWork W3209695682 @default.
- W2754408748 isParatext "false" @default.
- W2754408748 isRetracted "false" @default.
- W2754408748 magId "2754408748" @default.
- W2754408748 workType "article" @default.