Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754463048> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2754463048 endingPage "20" @default.
- W2754463048 startingPage "12" @default.
- W2754463048 abstract "Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder involving a complex cognitive impairment that can be difficult to diagnose early enough. Much work has therefore been done investigating the use of machine-learning techniques on functional and structural connectivity networks for ASD diagnosis. However, networks based on the morphology of the brain have yet to be similarly investigated, despite research findings that morphological features, such as cortical thickness, are affected by ASD. In this paper, we first propose modelling morphological brain connectivity (or graph) using a set of cortical attributes, each encoding a unique aspect of cortical morphology. However, it can be difficult to capture for each subject the complex pattern of relationships between morphological brain graphs, where each may be affected simultaneously or independently by ASD. In order to solve this problem, we therefore also propose the use of high-order networks which can better capture these relationships. Further, since ASD and normal control (NC) high-dimensional connectomic data might lie in different manifolds, we aim to find a low-dimensional representation of the data which captures the intrinsic dimensions of the underlying connectomic manifolds, thereby allowing better learning by linear classifiers. Hence, we propose the use of sparse graph embedding (SGE) method, which allows us to distinguish between data points drawn from different manifolds, even when they are too close to one another. SGE learns a similarity matrix of the connectomic data graph, which then is used to embed the high-dimensional connectomic features into a low-dimensional space that preserves the locality of the original data. Our ASD/NC classification results outperformed several state-of-the-art methods including statistical feature selection, and local linear embedding methods." @default.
- W2754463048 created "2017-09-25" @default.
- W2754463048 creator A5048784346 @default.
- W2754463048 creator A5068925886 @default.
- W2754463048 date "2017-01-01" @default.
- W2754463048 modified "2023-10-16" @default.
- W2754463048 title "Autism Spectrum Disorder Diagnosis Using Sparse Graph Embedding of Morphological Brain Networks" @default.
- W2754463048 cites W2050729386 @default.
- W2754463048 cites W2067774627 @default.
- W2754463048 cites W2101436791 @default.
- W2754463048 cites W2155513557 @default.
- W2754463048 cites W2345678177 @default.
- W2754463048 cites W2590910803 @default.
- W2754463048 cites W2600505436 @default.
- W2754463048 cites W4234063125 @default.
- W2754463048 doi "https://doi.org/10.1007/978-3-319-67675-3_2" @default.
- W2754463048 hasPublicationYear "2017" @default.
- W2754463048 type Work @default.
- W2754463048 sameAs 2754463048 @default.
- W2754463048 citedByCount "10" @default.
- W2754463048 countsByYear W27544630482019 @default.
- W2754463048 countsByYear W27544630482020 @default.
- W2754463048 countsByYear W27544630482021 @default.
- W2754463048 countsByYear W27544630482022 @default.
- W2754463048 crossrefType "book-chapter" @default.
- W2754463048 hasAuthorship W2754463048A5048784346 @default.
- W2754463048 hasAuthorship W2754463048A5068925886 @default.
- W2754463048 hasBestOaLocation W27544630482 @default.
- W2754463048 hasConcept C118552586 @default.
- W2754463048 hasConcept C121332964 @default.
- W2754463048 hasConcept C154945302 @default.
- W2754463048 hasConcept C156778621 @default.
- W2754463048 hasConcept C15744967 @default.
- W2754463048 hasConcept C205778803 @default.
- W2754463048 hasConcept C2778538070 @default.
- W2754463048 hasConcept C41008148 @default.
- W2754463048 hasConcept C41608201 @default.
- W2754463048 hasConcept C62520636 @default.
- W2754463048 hasConceptScore W2754463048C118552586 @default.
- W2754463048 hasConceptScore W2754463048C121332964 @default.
- W2754463048 hasConceptScore W2754463048C154945302 @default.
- W2754463048 hasConceptScore W2754463048C156778621 @default.
- W2754463048 hasConceptScore W2754463048C15744967 @default.
- W2754463048 hasConceptScore W2754463048C205778803 @default.
- W2754463048 hasConceptScore W2754463048C2778538070 @default.
- W2754463048 hasConceptScore W2754463048C41008148 @default.
- W2754463048 hasConceptScore W2754463048C41608201 @default.
- W2754463048 hasConceptScore W2754463048C62520636 @default.
- W2754463048 hasLocation W27544630481 @default.
- W2754463048 hasLocation W27544630482 @default.
- W2754463048 hasOpenAccess W2754463048 @default.
- W2754463048 hasPrimaryLocation W27544630481 @default.
- W2754463048 hasRelatedWork W1510434342 @default.
- W2754463048 hasRelatedWork W1993348057 @default.
- W2754463048 hasRelatedWork W2033703293 @default.
- W2754463048 hasRelatedWork W2079857627 @default.
- W2754463048 hasRelatedWork W2147661810 @default.
- W2754463048 hasRelatedWork W2748952813 @default.
- W2754463048 hasRelatedWork W2899084033 @default.
- W2754463048 hasRelatedWork W2942266477 @default.
- W2754463048 hasRelatedWork W3186452530 @default.
- W2754463048 hasRelatedWork W4230280807 @default.
- W2754463048 isParatext "false" @default.
- W2754463048 isRetracted "false" @default.
- W2754463048 magId "2754463048" @default.
- W2754463048 workType "book-chapter" @default.