Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754534128> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2754534128 abstract "Dictionary learning based image compression has attracted a lot of research efforts due to the inherent sparsity of image contents. Most algorithms in the literature, however, suffer from two drawbacks. First, the atoms selected for image patch reconstruction scatter over the entire dictionary, which leads to a high coding cost. Second, the sparse representation of image patches is performed independently from the quantization of sparse coefficients, which may result in a sub-optimal solution. In this paper, we propose the entropy based orthogonal matching pursuit (EOMP) algorithm and quantization KSVD (QKSVD) algorithm for dictionary learning-based image compression. An entropy regularization term is utilized in EOMP to restrict atom selection, and hence reduces the coding cost, and an adaptive quantization method is incorporated into the dictionary learning procedure in QKSVD to minimize the reconstruction error and quantization error simultaneously. Experimental results on 10 standard benchmark images demonstrate that our proposed approach achieves better performance than several state-of-the-art ones at low bit rate, such as KSVD based compression approach, JPEG, and JPEG-2000." @default.
- W2754534128 created "2017-09-25" @default.
- W2754534128 creator A5034520275 @default.
- W2754534128 creator A5066678888 @default.
- W2754534128 creator A5078315542 @default.
- W2754534128 date "2017-09-01" @default.
- W2754534128 modified "2023-09-26" @default.
- W2754534128 title "Dictionary learning-based image compression" @default.
- W2754534128 cites W1972959470 @default.
- W2754534128 cites W1978749115 @default.
- W2754534128 cites W2022722964 @default.
- W2754534128 cites W2022805437 @default.
- W2754534128 cites W2025475723 @default.
- W2754534128 cites W2045737896 @default.
- W2754534128 cites W2099563019 @default.
- W2754534128 cites W2105028194 @default.
- W2754534128 cites W2110802877 @default.
- W2754534128 cites W2128659236 @default.
- W2754534128 cites W2141089030 @default.
- W2754534128 cites W2154473820 @default.
- W2754534128 cites W2158165592 @default.
- W2754534128 cites W2160547390 @default.
- W2754534128 cites W2167307343 @default.
- W2754534128 cites W2345275602 @default.
- W2754534128 doi "https://doi.org/10.1109/icip.2017.8296880" @default.
- W2754534128 hasPublicationYear "2017" @default.
- W2754534128 type Work @default.
- W2754534128 sameAs 2754534128 @default.
- W2754534128 citedByCount "4" @default.
- W2754534128 countsByYear W27545341282019 @default.
- W2754534128 countsByYear W27545341282020 @default.
- W2754534128 countsByYear W27545341282022 @default.
- W2754534128 crossrefType "proceedings-article" @default.
- W2754534128 hasAuthorship W2754534128A5034520275 @default.
- W2754534128 hasAuthorship W2754534128A5066678888 @default.
- W2754534128 hasAuthorship W2754534128A5078315542 @default.
- W2754534128 hasConcept C106301342 @default.
- W2754534128 hasConcept C11413529 @default.
- W2754534128 hasConcept C115961682 @default.
- W2754534128 hasConcept C121332964 @default.
- W2754534128 hasConcept C124066611 @default.
- W2754534128 hasConcept C124851039 @default.
- W2754534128 hasConcept C13481523 @default.
- W2754534128 hasConcept C153180895 @default.
- W2754534128 hasConcept C154771677 @default.
- W2754534128 hasConcept C154945302 @default.
- W2754534128 hasConcept C156872377 @default.
- W2754534128 hasConcept C1769480 @default.
- W2754534128 hasConcept C198751489 @default.
- W2754534128 hasConcept C28855332 @default.
- W2754534128 hasConcept C41008148 @default.
- W2754534128 hasConcept C62520636 @default.
- W2754534128 hasConcept C78548338 @default.
- W2754534128 hasConcept C9417928 @default.
- W2754534128 hasConceptScore W2754534128C106301342 @default.
- W2754534128 hasConceptScore W2754534128C11413529 @default.
- W2754534128 hasConceptScore W2754534128C115961682 @default.
- W2754534128 hasConceptScore W2754534128C121332964 @default.
- W2754534128 hasConceptScore W2754534128C124066611 @default.
- W2754534128 hasConceptScore W2754534128C124851039 @default.
- W2754534128 hasConceptScore W2754534128C13481523 @default.
- W2754534128 hasConceptScore W2754534128C153180895 @default.
- W2754534128 hasConceptScore W2754534128C154771677 @default.
- W2754534128 hasConceptScore W2754534128C154945302 @default.
- W2754534128 hasConceptScore W2754534128C156872377 @default.
- W2754534128 hasConceptScore W2754534128C1769480 @default.
- W2754534128 hasConceptScore W2754534128C198751489 @default.
- W2754534128 hasConceptScore W2754534128C28855332 @default.
- W2754534128 hasConceptScore W2754534128C41008148 @default.
- W2754534128 hasConceptScore W2754534128C62520636 @default.
- W2754534128 hasConceptScore W2754534128C78548338 @default.
- W2754534128 hasConceptScore W2754534128C9417928 @default.
- W2754534128 hasLocation W27545341281 @default.
- W2754534128 hasOpenAccess W2754534128 @default.
- W2754534128 hasPrimaryLocation W27545341281 @default.
- W2754534128 hasRelatedWork W1584151564 @default.
- W2754534128 hasRelatedWork W2034969685 @default.
- W2754534128 hasRelatedWork W2073331571 @default.
- W2754534128 hasRelatedWork W2126317666 @default.
- W2754534128 hasRelatedWork W2165037343 @default.
- W2754534128 hasRelatedWork W2350615789 @default.
- W2754534128 hasRelatedWork W2393286898 @default.
- W2754534128 hasRelatedWork W2754534128 @default.
- W2754534128 hasRelatedWork W4289716937 @default.
- W2754534128 hasRelatedWork W2555164598 @default.
- W2754534128 isParatext "false" @default.
- W2754534128 isRetracted "false" @default.
- W2754534128 magId "2754534128" @default.
- W2754534128 workType "article" @default.