Matches in SemOpenAlex for { <https://semopenalex.org/work/W2754969969> ?p ?o ?g. }
- W2754969969 endingPage "141" @default.
- W2754969969 startingPage "132" @default.
- W2754969969 abstract "The relationship between cows' health, reproductive performance or disorders and their longevity is well demonstrated in the literature. However these associations at the cow level might not hold true at the herd level, and herd-level variables can modify cow-level outcomes independently of the cows' characteristics. The interaction between cow-level and herd-level variables is a relevant issue for understanding the culling of dairy cows. However it requires the appropriate group-level variables to assess any contextual effect. Based on 10 years of health and production data, the objectives of this paper are:(a) to quantify the culling rates of dairy herds in Québec; (b) to determine the profiles of the herds based on herd-level factors, such as demographics, reproduction, production and health indicators, and whether these profiles can be related to herd culling rates for use as potential contextual variables in multilevel modelling of culling risk. A retrospective longitudinal study was conducted on data from dairy herds in Québec, Canada, by extracting health information events from the dairy herd health management software used by most Québec producers and their veterinarians. Data were extracted for all lactations taking place between January 1st, 2001 and December 31st, 2010. A total of 432,733 lactations from 156,409 cows out of 763 herds were available for analysis. Thirty cow-level variables were aggregated for each herd and years of follow-up, and their relationship was investigated by Multiple Factor Analysis (MFA). The overall annual culling rate was 32%, with a 95% confidence interval (CI) of [31.6%,32.5%]. The dairy sale rate by 60 days in milk (DIM) was 3.2% [2.8%,3.6%]. The annual culling rate within 60 DIM was 8.2% [7.9%,8.4%]. The explained variance for each axis from the MFA was very low: 14.8% for the first axis and 13.1% for the second. From the MFA results, we conclude there is no relationship between the groups of herd-level indicators, demonstrating the heterogeneity among herds for their demographics, reproduction and production performance, and health status. However, based on Principal Component Analysis (PCA), the profiles of herds could be determined according to specific, single, herd-level indicators independently. The relationships between culling rates and specific herd-level variables within factors were limited to livestock sales, proportion of first lactation cows, herd size, proportion of calvings occurring in the fall, longer calving intervals and reduced 21-day pregnancy rates, increased days to first service, average age at first calving, and reduced milk fever incidence. The indicators found could be considered as contextual variables in multilevel model-building strategies to investigate cow culling risk." @default.
- W2754969969 created "2017-09-25" @default.
- W2754969969 creator A5007037312 @default.
- W2754969969 creator A5007686467 @default.
- W2754969969 creator A5039214632 @default.
- W2754969969 creator A5052322180 @default.
- W2754969969 creator A5055579460 @default.
- W2754969969 creator A5060177919 @default.
- W2754969969 creator A5063024258 @default.
- W2754969969 creator A5069927857 @default.
- W2754969969 creator A5070525189 @default.
- W2754969969 creator A5083062403 @default.
- W2754969969 date "2017-11-01" @default.
- W2754969969 modified "2023-10-06" @default.
- W2754969969 title "Culling from the herd's perspective—Exploring herd-level management factors and culling rates in Québec dairy herds" @default.
- W2754969969 cites W1532921549 @default.
- W2754969969 cites W153450241 @default.
- W2754969969 cites W1575581989 @default.
- W2754969969 cites W1963991144 @default.
- W2754969969 cites W1965181656 @default.
- W2754969969 cites W1973319045 @default.
- W2754969969 cites W1973778234 @default.
- W2754969969 cites W1979668057 @default.
- W2754969969 cites W1995367692 @default.
- W2754969969 cites W2000578192 @default.
- W2754969969 cites W2003498309 @default.
- W2754969969 cites W2005201153 @default.
- W2754969969 cites W2031691380 @default.
- W2754969969 cites W2042856599 @default.
- W2754969969 cites W2043388346 @default.
- W2754969969 cites W2044973968 @default.
- W2754969969 cites W2045852367 @default.
- W2754969969 cites W2046659522 @default.
- W2754969969 cites W2048397852 @default.
- W2754969969 cites W2049812036 @default.
- W2754969969 cites W2058463674 @default.
- W2754969969 cites W2062988755 @default.
- W2754969969 cites W2067272524 @default.
- W2754969969 cites W2070244317 @default.
- W2754969969 cites W2072398096 @default.
- W2754969969 cites W2076720852 @default.
- W2754969969 cites W2086844033 @default.
- W2754969969 cites W2091047667 @default.
- W2754969969 cites W2094013107 @default.
- W2754969969 cites W2102245649 @default.
- W2754969969 cites W2108581308 @default.
- W2754969969 cites W2112669742 @default.
- W2754969969 cites W2124125947 @default.
- W2754969969 cites W2133097426 @default.
- W2754969969 cites W2133959349 @default.
- W2754969969 cites W2135245367 @default.
- W2754969969 cites W2138106715 @default.
- W2754969969 cites W2143816098 @default.
- W2754969969 cites W2150911425 @default.
- W2754969969 cites W2153947402 @default.
- W2754969969 cites W2157785238 @default.
- W2754969969 cites W2159601767 @default.
- W2754969969 cites W2163078705 @default.
- W2754969969 cites W2164605887 @default.
- W2754969969 cites W2312610496 @default.
- W2754969969 cites W2332128401 @default.
- W2754969969 doi "https://doi.org/10.1016/j.prevetmed.2017.08.020" @default.
- W2754969969 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29254711" @default.
- W2754969969 hasPublicationYear "2017" @default.
- W2754969969 type Work @default.
- W2754969969 sameAs 2754969969 @default.
- W2754969969 citedByCount "18" @default.
- W2754969969 countsByYear W27549699692017 @default.
- W2754969969 countsByYear W27549699692019 @default.
- W2754969969 countsByYear W27549699692020 @default.
- W2754969969 countsByYear W27549699692021 @default.
- W2754969969 countsByYear W27549699692022 @default.
- W2754969969 countsByYear W27549699692023 @default.
- W2754969969 crossrefType "journal-article" @default.
- W2754969969 hasAuthorship W2754969969A5007037312 @default.
- W2754969969 hasAuthorship W2754969969A5007686467 @default.
- W2754969969 hasAuthorship W2754969969A5039214632 @default.
- W2754969969 hasAuthorship W2754969969A5052322180 @default.
- W2754969969 hasAuthorship W2754969969A5055579460 @default.
- W2754969969 hasAuthorship W2754969969A5060177919 @default.
- W2754969969 hasAuthorship W2754969969A5063024258 @default.
- W2754969969 hasAuthorship W2754969969A5069927857 @default.
- W2754969969 hasAuthorship W2754969969A5070525189 @default.
- W2754969969 hasAuthorship W2754969969A5083062403 @default.
- W2754969969 hasConcept C140793950 @default.
- W2754969969 hasConcept C144024400 @default.
- W2754969969 hasConcept C149923435 @default.
- W2754969969 hasConcept C194775826 @default.
- W2754969969 hasConcept C2776977481 @default.
- W2754969969 hasConcept C42972112 @default.
- W2754969969 hasConcept C52991690 @default.
- W2754969969 hasConcept C71924100 @default.
- W2754969969 hasConcept C86803240 @default.
- W2754969969 hasConceptScore W2754969969C140793950 @default.
- W2754969969 hasConceptScore W2754969969C144024400 @default.
- W2754969969 hasConceptScore W2754969969C149923435 @default.
- W2754969969 hasConceptScore W2754969969C194775826 @default.
- W2754969969 hasConceptScore W2754969969C2776977481 @default.