Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755116702> ?p ?o ?g. }
- W2755116702 abstract "Deep convolutional and recurrent neural networks have delivered significant advancements in object detection and tracking. However, current models handle detection and tracking through separate networks, and deep-learning-based joint detection and tracking has not yet been explored despite its potential benefits to both tasks. In this study, we present an integrated neural model called the Recurrent Correlational Network for joint detection and tracking, where the two tasks are performed over multi-frame representation learned through a single, trainable, and end-to-end network. Detection is benefited by the tracker because of the stabilized trajectories and tracking is aided by the enhanced representation afforded by the training of the detector. We show that recently developed convolutional long short-term memory networks can learn multi-frame, multi-task representation, which is useful for both tasks. In experiments, we tackled the detection of small flying objects, such as birds and unmanned aerial vehicles, that can be challenging for single-frame-based detectors. We found that there was consistent improvement in detection performance by the proposed model in comparison with deep single-frame detectors and currently used motion-based detectors." @default.
- W2755116702 created "2017-09-25" @default.
- W2755116702 creator A5003277535 @default.
- W2755116702 creator A5006134569 @default.
- W2755116702 creator A5026866776 @default.
- W2755116702 creator A5062487802 @default.
- W2755116702 creator A5067212480 @default.
- W2755116702 creator A5069342829 @default.
- W2755116702 date "2017-09-14" @default.
- W2755116702 modified "2023-09-24" @default.
- W2755116702 title "Learning Multi-frame Visual Representation for Joint Detection and Tracking of Small Objects." @default.
- W2755116702 cites W1857884451 @default.
- W2755116702 cites W1947481528 @default.
- W2755116702 cites W1971129545 @default.
- W2755116702 cites W1997121481 @default.
- W2755116702 cites W2016589492 @default.
- W2755116702 cites W2031454541 @default.
- W2755116702 cites W2064675550 @default.
- W2755116702 cites W2096343094 @default.
- W2755116702 cites W2102605133 @default.
- W2755116702 cites W2112796928 @default.
- W2755116702 cites W2117539524 @default.
- W2755116702 cites W2117687030 @default.
- W2755116702 cites W2118877769 @default.
- W2755116702 cites W2122469558 @default.
- W2755116702 cites W2125556102 @default.
- W2755116702 cites W2130293653 @default.
- W2755116702 cites W2138302688 @default.
- W2755116702 cites W2161969291 @default.
- W2755116702 cites W2263483072 @default.
- W2755116702 cites W2308045930 @default.
- W2755116702 cites W2336589871 @default.
- W2755116702 cites W2339473870 @default.
- W2755116702 cites W2340000481 @default.
- W2755116702 cites W2407521645 @default.
- W2755116702 cites W24089286 @default.
- W2755116702 cites W2419501904 @default.
- W2755116702 cites W2464235600 @default.
- W2755116702 cites W2470394683 @default.
- W2755116702 cites W2496665188 @default.
- W2755116702 cites W2497039038 @default.
- W2755116702 cites W2504108613 @default.
- W2755116702 cites W2520477759 @default.
- W2755116702 cites W2552126649 @default.
- W2755116702 cites W2570343428 @default.
- W2755116702 cites W2579152745 @default.
- W2755116702 cites W2594258618 @default.
- W2755116702 cites W2604445072 @default.
- W2755116702 cites W2617855130 @default.
- W2755116702 cites W2740668812 @default.
- W2755116702 cites W2756784878 @default.
- W2755116702 cites W2766881959 @default.
- W2755116702 cites W2949493420 @default.
- W2755116702 cites W2950094539 @default.
- W2755116702 cites W2950966695 @default.
- W2755116702 cites W2951183276 @default.
- W2755116702 cites W2951378980 @default.
- W2755116702 cites W2951548327 @default.
- W2755116702 cites W2951649776 @default.
- W2755116702 cites W2953061907 @default.
- W2755116702 cites W2953086983 @default.
- W2755116702 cites W2953106684 @default.
- W2755116702 cites W2953118818 @default.
- W2755116702 cites W2962778460 @default.
- W2755116702 cites W2962835968 @default.
- W2755116702 cites W2962989418 @default.
- W2755116702 cites W2963063317 @default.
- W2755116702 cites W3106250896 @default.
- W2755116702 hasPublicationYear "2017" @default.
- W2755116702 type Work @default.
- W2755116702 sameAs 2755116702 @default.
- W2755116702 citedByCount "2" @default.
- W2755116702 countsByYear W27551167022018 @default.
- W2755116702 countsByYear W27551167022019 @default.
- W2755116702 crossrefType "posted-content" @default.
- W2755116702 hasAuthorship W2755116702A5003277535 @default.
- W2755116702 hasAuthorship W2755116702A5006134569 @default.
- W2755116702 hasAuthorship W2755116702A5026866776 @default.
- W2755116702 hasAuthorship W2755116702A5062487802 @default.
- W2755116702 hasAuthorship W2755116702A5067212480 @default.
- W2755116702 hasAuthorship W2755116702A5069342829 @default.
- W2755116702 hasConcept C108583219 @default.
- W2755116702 hasConcept C126042441 @default.
- W2755116702 hasConcept C127413603 @default.
- W2755116702 hasConcept C153180895 @default.
- W2755116702 hasConcept C154945302 @default.
- W2755116702 hasConcept C15744967 @default.
- W2755116702 hasConcept C170154142 @default.
- W2755116702 hasConcept C17744445 @default.
- W2755116702 hasConcept C18555067 @default.
- W2755116702 hasConcept C19417346 @default.
- W2755116702 hasConcept C199539241 @default.
- W2755116702 hasConcept C201995342 @default.
- W2755116702 hasConcept C202474056 @default.
- W2755116702 hasConcept C2775936607 @default.
- W2755116702 hasConcept C2776151529 @default.
- W2755116702 hasConcept C2776359362 @default.
- W2755116702 hasConcept C2780451532 @default.
- W2755116702 hasConcept C2781238097 @default.
- W2755116702 hasConcept C31972630 @default.