Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755148105> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2755148105 abstract "In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods." @default.
- W2755148105 created "2017-09-25" @default.
- W2755148105 creator A5028729272 @default.
- W2755148105 creator A5046876389 @default.
- W2755148105 creator A5053470148 @default.
- W2755148105 creator A5068911982 @default.
- W2755148105 creator A5074878694 @default.
- W2755148105 date "2017-11-01" @default.
- W2755148105 modified "2023-10-01" @default.
- W2755148105 title "Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning" @default.
- W2755148105 cites W1495862233 @default.
- W2755148105 cites W2086359741 @default.
- W2755148105 cites W2109559642 @default.
- W2755148105 cites W2122646361 @default.
- W2755148105 cites W2129039806 @default.
- W2755148105 cites W2132870739 @default.
- W2755148105 cites W2145546780 @default.
- W2755148105 cites W2153635508 @default.
- W2755148105 cites W2158469273 @default.
- W2755148105 cites W2583152362 @default.
- W2755148105 cites W2608911009 @default.
- W2755148105 cites W2963459078 @default.
- W2755148105 cites W4239954780 @default.
- W2755148105 cites W4254182148 @default.
- W2755148105 doi "https://doi.org/10.1109/icdmw.2017.149" @default.
- W2755148105 hasPublicationYear "2017" @default.
- W2755148105 type Work @default.
- W2755148105 sameAs 2755148105 @default.
- W2755148105 citedByCount "179" @default.
- W2755148105 countsByYear W27551481052018 @default.
- W2755148105 countsByYear W27551481052019 @default.
- W2755148105 countsByYear W27551481052020 @default.
- W2755148105 countsByYear W27551481052021 @default.
- W2755148105 countsByYear W27551481052022 @default.
- W2755148105 countsByYear W27551481052023 @default.
- W2755148105 crossrefType "proceedings-article" @default.
- W2755148105 hasAuthorship W2755148105A5028729272 @default.
- W2755148105 hasAuthorship W2755148105A5046876389 @default.
- W2755148105 hasAuthorship W2755148105A5053470148 @default.
- W2755148105 hasAuthorship W2755148105A5068911982 @default.
- W2755148105 hasAuthorship W2755148105A5074878694 @default.
- W2755148105 hasBestOaLocation W27551481052 @default.
- W2755148105 hasConcept C119857082 @default.
- W2755148105 hasConcept C12267149 @default.
- W2755148105 hasConcept C124101348 @default.
- W2755148105 hasConcept C153180895 @default.
- W2755148105 hasConcept C154945302 @default.
- W2755148105 hasConcept C31258907 @default.
- W2755148105 hasConcept C31395832 @default.
- W2755148105 hasConcept C41008148 @default.
- W2755148105 hasConcept C50644808 @default.
- W2755148105 hasConcept C64869954 @default.
- W2755148105 hasConcept C739882 @default.
- W2755148105 hasConcept C8038995 @default.
- W2755148105 hasConceptScore W2755148105C119857082 @default.
- W2755148105 hasConceptScore W2755148105C12267149 @default.
- W2755148105 hasConceptScore W2755148105C124101348 @default.
- W2755148105 hasConceptScore W2755148105C153180895 @default.
- W2755148105 hasConceptScore W2755148105C154945302 @default.
- W2755148105 hasConceptScore W2755148105C31258907 @default.
- W2755148105 hasConceptScore W2755148105C31395832 @default.
- W2755148105 hasConceptScore W2755148105C41008148 @default.
- W2755148105 hasConceptScore W2755148105C50644808 @default.
- W2755148105 hasConceptScore W2755148105C64869954 @default.
- W2755148105 hasConceptScore W2755148105C739882 @default.
- W2755148105 hasConceptScore W2755148105C8038995 @default.
- W2755148105 hasLocation W27551481051 @default.
- W2755148105 hasLocation W27551481052 @default.
- W2755148105 hasLocation W27551481053 @default.
- W2755148105 hasOpenAccess W2755148105 @default.
- W2755148105 hasPrimaryLocation W27551481051 @default.
- W2755148105 hasRelatedWork W114377731 @default.
- W2755148105 hasRelatedWork W1988979287 @default.
- W2755148105 hasRelatedWork W2011561403 @default.
- W2755148105 hasRelatedWork W2075979125 @default.
- W2755148105 hasRelatedWork W2077193964 @default.
- W2755148105 hasRelatedWork W2077820933 @default.
- W2755148105 hasRelatedWork W2084779923 @default.
- W2755148105 hasRelatedWork W2112813276 @default.
- W2755148105 hasRelatedWork W2381070547 @default.
- W2755148105 hasRelatedWork W2970229296 @default.
- W2755148105 isParatext "false" @default.
- W2755148105 isRetracted "false" @default.
- W2755148105 magId "2755148105" @default.
- W2755148105 workType "article" @default.