Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755188415> ?p ?o ?g. }
- W2755188415 endingPage "1257" @default.
- W2755188415 startingPage "1243" @default.
- W2755188415 abstract "This study presents a model to forecast the Indian summer monsoon rainfall (ISMR) (June–September) based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling purposes, viz., (1) training data set (1871–1960), and (2) testing data set (1961–2014). Statistical analyzes reflect the dynamic nature of the ISMR, which couldn't be predicted efficiently by statistical and mathematical based models. Therefore, this study suggests the usage of three techniques, viz., fuzzy set, entropy and artificial neural network (ANN). Based on these techniques, a novel ISMR time series forecasting model is designed to deal with the dynamic nature of the ISMR. This model is verified and validated with training and testing data sets. Various statistical analyzes and comparison studies demonstrate the effectiveness of the proposed model." @default.
- W2755188415 created "2017-09-25" @default.
- W2755188415 creator A5070176191 @default.
- W2755188415 date "2018-07-01" @default.
- W2755188415 modified "2023-10-18" @default.
- W2755188415 title "Indian summer monsoon rainfall (ISMR) forecasting using time series data: A fuzzy-entropy-neuro based expert system" @default.
- W2755188415 cites W1498436455 @default.
- W2755188415 cites W1953028916 @default.
- W2755188415 cites W1971869067 @default.
- W2755188415 cites W1973844719 @default.
- W2755188415 cites W1975588633 @default.
- W2755188415 cites W1978909760 @default.
- W2755188415 cites W1985697982 @default.
- W2755188415 cites W1995390392 @default.
- W2755188415 cites W1995875735 @default.
- W2755188415 cites W2001675020 @default.
- W2755188415 cites W2005274681 @default.
- W2755188415 cites W2010628845 @default.
- W2755188415 cites W2018270410 @default.
- W2755188415 cites W2019129076 @default.
- W2755188415 cites W2027165709 @default.
- W2755188415 cites W2028465564 @default.
- W2755188415 cites W2031355292 @default.
- W2755188415 cites W2032206327 @default.
- W2755188415 cites W2038224183 @default.
- W2755188415 cites W2039174510 @default.
- W2755188415 cites W2040916393 @default.
- W2755188415 cites W2048626865 @default.
- W2755188415 cites W2049208917 @default.
- W2755188415 cites W2053227169 @default.
- W2755188415 cites W2062581418 @default.
- W2755188415 cites W2064805843 @default.
- W2755188415 cites W2075795701 @default.
- W2755188415 cites W2079503797 @default.
- W2755188415 cites W2083844448 @default.
- W2755188415 cites W2088503829 @default.
- W2755188415 cites W2091586111 @default.
- W2755188415 cites W2095306916 @default.
- W2755188415 cites W2111499159 @default.
- W2755188415 cites W2140678653 @default.
- W2755188415 cites W2163828179 @default.
- W2755188415 cites W2170215267 @default.
- W2755188415 cites W2176629547 @default.
- W2755188415 cites W2764769393 @default.
- W2755188415 cites W2978725006 @default.
- W2755188415 cites W4211007335 @default.
- W2755188415 doi "https://doi.org/10.1016/j.gsf.2017.07.011" @default.
- W2755188415 hasPublicationYear "2018" @default.
- W2755188415 type Work @default.
- W2755188415 sameAs 2755188415 @default.
- W2755188415 citedByCount "39" @default.
- W2755188415 countsByYear W27551884152017 @default.
- W2755188415 countsByYear W27551884152018 @default.
- W2755188415 countsByYear W27551884152019 @default.
- W2755188415 countsByYear W27551884152020 @default.
- W2755188415 countsByYear W27551884152021 @default.
- W2755188415 countsByYear W27551884152022 @default.
- W2755188415 countsByYear W27551884152023 @default.
- W2755188415 crossrefType "journal-article" @default.
- W2755188415 hasAuthorship W2755188415A5070176191 @default.
- W2755188415 hasBestOaLocation W27551884151 @default.
- W2755188415 hasConcept C106301342 @default.
- W2755188415 hasConcept C119857082 @default.
- W2755188415 hasConcept C121332964 @default.
- W2755188415 hasConcept C127313418 @default.
- W2755188415 hasConcept C143724316 @default.
- W2755188415 hasConcept C151406439 @default.
- W2755188415 hasConcept C151730666 @default.
- W2755188415 hasConcept C153294291 @default.
- W2755188415 hasConcept C154945302 @default.
- W2755188415 hasConcept C205649164 @default.
- W2755188415 hasConcept C41008148 @default.
- W2755188415 hasConcept C50644808 @default.
- W2755188415 hasConcept C58489278 @default.
- W2755188415 hasConcept C62520636 @default.
- W2755188415 hasConceptScore W2755188415C106301342 @default.
- W2755188415 hasConceptScore W2755188415C119857082 @default.
- W2755188415 hasConceptScore W2755188415C121332964 @default.
- W2755188415 hasConceptScore W2755188415C127313418 @default.
- W2755188415 hasConceptScore W2755188415C143724316 @default.
- W2755188415 hasConceptScore W2755188415C151406439 @default.
- W2755188415 hasConceptScore W2755188415C151730666 @default.
- W2755188415 hasConceptScore W2755188415C153294291 @default.
- W2755188415 hasConceptScore W2755188415C154945302 @default.
- W2755188415 hasConceptScore W2755188415C205649164 @default.
- W2755188415 hasConceptScore W2755188415C41008148 @default.
- W2755188415 hasConceptScore W2755188415C50644808 @default.
- W2755188415 hasConceptScore W2755188415C58489278 @default.
- W2755188415 hasConceptScore W2755188415C62520636 @default.
- W2755188415 hasFunder F4320320719 @default.
- W2755188415 hasIssue "4" @default.
- W2755188415 hasLocation W27551884151 @default.
- W2755188415 hasLocation W27551884152 @default.
- W2755188415 hasOpenAccess W2755188415 @default.
- W2755188415 hasPrimaryLocation W27551884151 @default.
- W2755188415 hasRelatedWork W2242271381 @default.
- W2755188415 hasRelatedWork W2357809648 @default.
- W2755188415 hasRelatedWork W2378555542 @default.