Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755222014> ?p ?o ?g. }
- W2755222014 endingPage "27" @default.
- W2755222014 startingPage "1" @default.
- W2755222014 abstract "Active and passive sensing technologies are providing powerful mechanisms to track, model, and understand a range of health behaviors and well-being states. Despite yielding rich, dense and high fidelity data, current sensing technologies often require highly engineered study designs and persistent participant compliance, making them difficult to scale to large populations and to data acquisition tasks spanning extended time periods. This paper situates social media as a new passive, unobtrusive sensing technology. We propose a semi-supervised machine learning framework to combine small samples of data gathered through active sensing, with large-scale social media data to infer mood instability (MI) in individuals. Starting from a theoretically-grounded measure of MI obtained from mobile ecological momentary assessments (EMAs), we show that our model is able to infer MI in a large population of Twitter users with 96% accuracy and F-1 score. Additionally, we show that, our model predicts self-identifying Twitter users with bipolar and borderline personality disorder to exhibit twice the likelihood of high MI, compared to that in a suitable control. We discuss the implications and the potential for integrating complementary sensing capabilities to address complex research challenges in precision medicine." @default.
- W2755222014 created "2017-09-25" @default.
- W2755222014 creator A5017564609 @default.
- W2755222014 creator A5040820784 @default.
- W2755222014 creator A5057029055 @default.
- W2755222014 creator A5064396720 @default.
- W2755222014 creator A5088617975 @default.
- W2755222014 date "2017-09-11" @default.
- W2755222014 modified "2023-10-16" @default.
- W2755222014 title "Inferring Mood Instability on Social Media by Leveraging Ecological Momentary Assessments" @default.
- W2755222014 cites W1816639634 @default.
- W2755222014 cites W1882088395 @default.
- W2755222014 cites W1894490285 @default.
- W2755222014 cites W1978507988 @default.
- W2755222014 cites W1983320747 @default.
- W2755222014 cites W1987674704 @default.
- W2755222014 cites W2001414307 @default.
- W2755222014 cites W2001732540 @default.
- W2755222014 cites W2005069458 @default.
- W2755222014 cites W2008803468 @default.
- W2755222014 cites W2022466128 @default.
- W2755222014 cites W2040963510 @default.
- W2755222014 cites W2042452443 @default.
- W2755222014 cites W2051197269 @default.
- W2755222014 cites W2066806488 @default.
- W2755222014 cites W2068689371 @default.
- W2755222014 cites W2072364128 @default.
- W2755222014 cites W2078074240 @default.
- W2755222014 cites W2095547099 @default.
- W2755222014 cites W2111125016 @default.
- W2755222014 cites W2114029769 @default.
- W2755222014 cites W2119595472 @default.
- W2755222014 cites W2129352331 @default.
- W2755222014 cites W2137100320 @default.
- W2755222014 cites W2138776269 @default.
- W2755222014 cites W2143002682 @default.
- W2755222014 cites W2144279833 @default.
- W2755222014 cites W2155002669 @default.
- W2755222014 cites W2156221064 @default.
- W2755222014 cites W2156567116 @default.
- W2755222014 cites W2162051395 @default.
- W2755222014 cites W2171801645 @default.
- W2755222014 cites W2250553926 @default.
- W2755222014 cites W2291227510 @default.
- W2755222014 cites W2313383114 @default.
- W2755222014 cites W2316993542 @default.
- W2755222014 cites W2325572465 @default.
- W2755222014 cites W2394670422 @default.
- W2755222014 cites W2396775314 @default.
- W2755222014 cites W2516086211 @default.
- W2755222014 cites W2519049461 @default.
- W2755222014 cites W2568836284 @default.
- W2755222014 cites W2588917609 @default.
- W2755222014 cites W4253707727 @default.
- W2755222014 cites W4256384952 @default.
- W2755222014 doi "https://doi.org/10.1145/3130960" @default.
- W2755222014 hasPublicationYear "2017" @default.
- W2755222014 type Work @default.
- W2755222014 sameAs 2755222014 @default.
- W2755222014 citedByCount "55" @default.
- W2755222014 countsByYear W27552220142017 @default.
- W2755222014 countsByYear W27552220142018 @default.
- W2755222014 countsByYear W27552220142019 @default.
- W2755222014 countsByYear W27552220142020 @default.
- W2755222014 countsByYear W27552220142021 @default.
- W2755222014 countsByYear W27552220142022 @default.
- W2755222014 countsByYear W27552220142023 @default.
- W2755222014 crossrefType "journal-article" @default.
- W2755222014 hasAuthorship W2755222014A5017564609 @default.
- W2755222014 hasAuthorship W2755222014A5040820784 @default.
- W2755222014 hasAuthorship W2755222014A5057029055 @default.
- W2755222014 hasAuthorship W2755222014A5064396720 @default.
- W2755222014 hasAuthorship W2755222014A5088617975 @default.
- W2755222014 hasConcept C107457646 @default.
- W2755222014 hasConcept C113364801 @default.
- W2755222014 hasConcept C119599485 @default.
- W2755222014 hasConcept C119857082 @default.
- W2755222014 hasConcept C127413603 @default.
- W2755222014 hasConcept C136764020 @default.
- W2755222014 hasConcept C154945302 @default.
- W2755222014 hasConcept C15744967 @default.
- W2755222014 hasConcept C205649164 @default.
- W2755222014 hasConcept C2522767166 @default.
- W2755222014 hasConcept C2776459999 @default.
- W2755222014 hasConcept C2778755073 @default.
- W2755222014 hasConcept C2780733359 @default.
- W2755222014 hasConcept C2908647359 @default.
- W2755222014 hasConcept C41008148 @default.
- W2755222014 hasConcept C518677369 @default.
- W2755222014 hasConcept C58640448 @default.
- W2755222014 hasConcept C71924100 @default.
- W2755222014 hasConcept C76155785 @default.
- W2755222014 hasConcept C77805123 @default.
- W2755222014 hasConcept C99454951 @default.
- W2755222014 hasConceptScore W2755222014C107457646 @default.
- W2755222014 hasConceptScore W2755222014C113364801 @default.
- W2755222014 hasConceptScore W2755222014C119599485 @default.
- W2755222014 hasConceptScore W2755222014C119857082 @default.