Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755286543> ?p ?o ?g. }
- W2755286543 abstract "Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification." @default.
- W2755286543 created "2017-09-25" @default.
- W2755286543 creator A5004644695 @default.
- W2755286543 creator A5005577303 @default.
- W2755286543 creator A5026634347 @default.
- W2755286543 creator A5032950746 @default.
- W2755286543 creator A5049379695 @default.
- W2755286543 creator A5058136382 @default.
- W2755286543 creator A5079619886 @default.
- W2755286543 creator A5088583491 @default.
- W2755286543 creator A5091765070 @default.
- W2755286543 date "2017-09-18" @default.
- W2755286543 modified "2023-10-16" @default.
- W2755286543 title "Matterport3D: Learning from RGB-D Data in Indoor Environments" @default.
- W2755286543 cites W116751493 @default.
- W2755286543 cites W125693051 @default.
- W2755286543 cites W1869500417 @default.
- W2755286543 cites W1899309388 @default.
- W2755286543 cites W1905829557 @default.
- W2755286543 cites W1923184257 @default.
- W2755286543 cites W1929856797 @default.
- W2755286543 cites W1985238052 @default.
- W2755286543 cites W1989476314 @default.
- W2755286543 cites W2008073424 @default.
- W2755286543 cites W2017814585 @default.
- W2755286543 cites W2018881897 @default.
- W2755286543 cites W2066813062 @default.
- W2755286543 cites W2067912884 @default.
- W2755286543 cites W2071906076 @default.
- W2755286543 cites W2076491823 @default.
- W2755286543 cites W2085411191 @default.
- W2755286543 cites W2088711760 @default.
- W2755286543 cites W2112255529 @default.
- W2755286543 cites W2124907686 @default.
- W2755286543 cites W2134670479 @default.
- W2755286543 cites W2146814781 @default.
- W2755286543 cites W2152571752 @default.
- W2755286543 cites W2160398734 @default.
- W2755286543 cites W218762409 @default.
- W2755286543 cites W2194775991 @default.
- W2755286543 cites W2229637417 @default.
- W2755286543 cites W2253156915 @default.
- W2755286543 cites W2283234189 @default.
- W2755286543 cites W2299913536 @default.
- W2755286543 cites W2336961836 @default.
- W2755286543 cites W2337010728 @default.
- W2755286543 cites W2460657278 @default.
- W2755286543 cites W2469269585 @default.
- W2755286543 cites W2503776495 @default.
- W2755286543 cites W2529153011 @default.
- W2755286543 cites W2558625610 @default.
- W2755286543 cites W2563685048 @default.
- W2755286543 cites W2586114507 @default.
- W2755286543 cites W2738551266 @default.
- W2755286543 cites W2949896259 @default.
- W2755286543 cites W2950405180 @default.
- W2755286543 cites W2950493473 @default.
- W2755286543 cites W2950747644 @default.
- W2755286543 cites W2953221084 @default.
- W2755286543 doi "https://doi.org/10.48550/arxiv.1709.06158" @default.
- W2755286543 hasPublicationYear "2017" @default.
- W2755286543 type Work @default.
- W2755286543 sameAs 2755286543 @default.
- W2755286543 citedByCount "209" @default.
- W2755286543 countsByYear W27552865432017 @default.
- W2755286543 countsByYear W27552865432018 @default.
- W2755286543 countsByYear W27552865432019 @default.
- W2755286543 countsByYear W27552865432020 @default.
- W2755286543 countsByYear W27552865432021 @default.
- W2755286543 countsByYear W27552865432022 @default.
- W2755286543 crossrefType "posted-content" @default.
- W2755286543 hasAuthorship W2755286543A5004644695 @default.
- W2755286543 hasAuthorship W2755286543A5005577303 @default.
- W2755286543 hasAuthorship W2755286543A5026634347 @default.
- W2755286543 hasAuthorship W2755286543A5032950746 @default.
- W2755286543 hasAuthorship W2755286543A5049379695 @default.
- W2755286543 hasAuthorship W2755286543A5058136382 @default.
- W2755286543 hasAuthorship W2755286543A5079619886 @default.
- W2755286543 hasAuthorship W2755286543A5088583491 @default.
- W2755286543 hasAuthorship W2755286543A5091765070 @default.
- W2755286543 hasBestOaLocation W27552865431 @default.
- W2755286543 hasConcept C105795698 @default.
- W2755286543 hasConcept C127413603 @default.
- W2755286543 hasConcept C153180895 @default.
- W2755286543 hasConcept C154945302 @default.
- W2755286543 hasConcept C165064840 @default.
- W2755286543 hasConcept C177264268 @default.
- W2755286543 hasConcept C199360897 @default.
- W2755286543 hasConcept C205649164 @default.
- W2755286543 hasConcept C2778755073 @default.
- W2755286543 hasConcept C2780428219 @default.
- W2755286543 hasConcept C31972630 @default.
- W2755286543 hasConcept C33923547 @default.
- W2755286543 hasConcept C41008148 @default.
- W2755286543 hasConcept C58640448 @default.
- W2755286543 hasConcept C78519656 @default.
- W2755286543 hasConcept C82990744 @default.
- W2755286543 hasConcept C89600930 @default.
- W2755286543 hasConceptScore W2755286543C105795698 @default.
- W2755286543 hasConceptScore W2755286543C127413603 @default.