Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755326148> ?p ?o ?g. }
- W2755326148 endingPage "412" @default.
- W2755326148 startingPage "401" @default.
- W2755326148 abstract "Contrary to the single pier, due to the complexity of the scour mechanism around pile groups, empirical methods do not give a satisfactory prediction for the scour depth around pier with multiple piles. It was shown recently that artificial neural networks (NNs) have better prediction performance than empirical methods. In order to exploit the full potential of the NN procedure for predicting the scour depth around pile groups, a ‘Bagging’ technique is adopted in this paper. The comparison between several different approaches for improving the generalization performance of NNs shows that ‘Bagging’ is the most reliable method. Furthermore, the sensitivity analysis is performed on the data to determine the effect of different inputs on the scour depth around pile groups. This analysis shows that pile diameter and pile spacing are dominant contributors." @default.
- W2755326148 created "2017-09-25" @default.
- W2755326148 creator A5010462715 @default.
- W2755326148 creator A5036801084 @default.
- W2755326148 creator A5053124996 @default.
- W2755326148 creator A5068857495 @default.
- W2755326148 date "2017-12-18" @default.
- W2755326148 modified "2023-10-16" @default.
- W2755326148 title "Bagged neural network for estimating the scour depth around pile groups" @default.
- W2755326148 cites W1550861865 @default.
- W2755326148 cites W1582774210 @default.
- W2755326148 cites W1968005953 @default.
- W2755326148 cites W1970332732 @default.
- W2755326148 cites W1980712893 @default.
- W2755326148 cites W1991122827 @default.
- W2755326148 cites W1994254420 @default.
- W2755326148 cites W1995828689 @default.
- W2755326148 cites W2002096058 @default.
- W2755326148 cites W2017184581 @default.
- W2755326148 cites W2022519428 @default.
- W2755326148 cites W2027724321 @default.
- W2755326148 cites W2034328304 @default.
- W2755326148 cites W2036679573 @default.
- W2755326148 cites W2048875739 @default.
- W2755326148 cites W2054724815 @default.
- W2755326148 cites W2062294426 @default.
- W2755326148 cites W2063119273 @default.
- W2755326148 cites W2065445636 @default.
- W2755326148 cites W2068577991 @default.
- W2755326148 cites W2088130803 @default.
- W2755326148 cites W2095806561 @default.
- W2755326148 cites W2112973339 @default.
- W2755326148 cites W2123699775 @default.
- W2755326148 cites W2137983211 @default.
- W2755326148 cites W2151571212 @default.
- W2755326148 cites W2154378101 @default.
- W2755326148 cites W2155482699 @default.
- W2755326148 cites W2165302246 @default.
- W2755326148 cites W2278608859 @default.
- W2755326148 cites W2320396766 @default.
- W2755326148 cites W2462927295 @default.
- W2755326148 cites W2575530188 @default.
- W2755326148 cites W4212883601 @default.
- W2755326148 cites W4254931348 @default.
- W2755326148 cites W586791972 @default.
- W2755326148 doi "https://doi.org/10.1080/15715124.2017.1372449" @default.
- W2755326148 hasPublicationYear "2017" @default.
- W2755326148 type Work @default.
- W2755326148 sameAs 2755326148 @default.
- W2755326148 citedByCount "13" @default.
- W2755326148 countsByYear W27553261482018 @default.
- W2755326148 countsByYear W27553261482019 @default.
- W2755326148 countsByYear W27553261482020 @default.
- W2755326148 countsByYear W27553261482021 @default.
- W2755326148 countsByYear W27553261482022 @default.
- W2755326148 countsByYear W27553261482023 @default.
- W2755326148 crossrefType "journal-article" @default.
- W2755326148 hasAuthorship W2755326148A5010462715 @default.
- W2755326148 hasAuthorship W2755326148A5036801084 @default.
- W2755326148 hasAuthorship W2755326148A5053124996 @default.
- W2755326148 hasAuthorship W2755326148A5068857495 @default.
- W2755326148 hasConcept C119560385 @default.
- W2755326148 hasConcept C127413603 @default.
- W2755326148 hasConcept C134306372 @default.
- W2755326148 hasConcept C154945302 @default.
- W2755326148 hasConcept C157892014 @default.
- W2755326148 hasConcept C165696696 @default.
- W2755326148 hasConcept C177148314 @default.
- W2755326148 hasConcept C187320778 @default.
- W2755326148 hasConcept C21200559 @default.
- W2755326148 hasConcept C24326235 @default.
- W2755326148 hasConcept C33923547 @default.
- W2755326148 hasConcept C38652104 @default.
- W2755326148 hasConcept C41008148 @default.
- W2755326148 hasConcept C50644808 @default.
- W2755326148 hasConcept C66938386 @default.
- W2755326148 hasConceptScore W2755326148C119560385 @default.
- W2755326148 hasConceptScore W2755326148C127413603 @default.
- W2755326148 hasConceptScore W2755326148C134306372 @default.
- W2755326148 hasConceptScore W2755326148C154945302 @default.
- W2755326148 hasConceptScore W2755326148C157892014 @default.
- W2755326148 hasConceptScore W2755326148C165696696 @default.
- W2755326148 hasConceptScore W2755326148C177148314 @default.
- W2755326148 hasConceptScore W2755326148C187320778 @default.
- W2755326148 hasConceptScore W2755326148C21200559 @default.
- W2755326148 hasConceptScore W2755326148C24326235 @default.
- W2755326148 hasConceptScore W2755326148C33923547 @default.
- W2755326148 hasConceptScore W2755326148C38652104 @default.
- W2755326148 hasConceptScore W2755326148C41008148 @default.
- W2755326148 hasConceptScore W2755326148C50644808 @default.
- W2755326148 hasConceptScore W2755326148C66938386 @default.
- W2755326148 hasIssue "4" @default.
- W2755326148 hasLocation W27553261481 @default.
- W2755326148 hasOpenAccess W2755326148 @default.
- W2755326148 hasPrimaryLocation W27553261481 @default.
- W2755326148 hasRelatedWork W1839429328 @default.
- W2755326148 hasRelatedWork W1969404656 @default.
- W2755326148 hasRelatedWork W2005559061 @default.