Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755802200> ?p ?o ?g. }
- W2755802200 abstract "Contemporary frameworks for data analytics, such as Hadoop, Spark, and Flink seek to allow applications to scale performance flexibly by adding hardware nodes. However, we find that when the computation on each individual node is optimized, peripheral activities such as creating data partitions, messaging and synchronizing between nodes diminish the speedup obtainable from adding more hardware. We analyze workloads which distribute operations on correlated data—such as joins and aggregation found in SQL, text similarity searches, and image disparity computations. After optimizing computation on efficient, custom processors, we discover challenges in scaling the applications to hundreds of nodes on a high-bandwidth network. We then describe techniques to overcome these challenges towards prototyping a 512-node system which is able to execute SQL queries offloaded from a commercial database, and outperform SQL-on-hadoop and traditional parallel RDBMS executions by 173x and 7x respectively." @default.
- W2755802200 created "2017-09-25" @default.
- W2755802200 creator A5006977915 @default.
- W2755802200 creator A5032299527 @default.
- W2755802200 creator A5037802216 @default.
- W2755802200 creator A5040126908 @default.
- W2755802200 creator A5052418518 @default.
- W2755802200 creator A5059248852 @default.
- W2755802200 creator A5072685183 @default.
- W2755802200 creator A5076157365 @default.
- W2755802200 creator A5080323905 @default.
- W2755802200 creator A5084820862 @default.
- W2755802200 date "2017-06-01" @default.
- W2755802200 modified "2023-09-23" @default.
- W2755802200 title "Big Data Processing: Scalability with Extreme Single-Node Performance" @default.
- W2755802200 cites W1425731158 @default.
- W2755802200 cites W1602137482 @default.
- W2755802200 cites W2010324635 @default.
- W2755802200 cites W2014455962 @default.
- W2755802200 cites W2044490410 @default.
- W2755802200 cites W2061857234 @default.
- W2755802200 cites W2072541977 @default.
- W2755802200 cites W2074988668 @default.
- W2755802200 cites W2101161250 @default.
- W2755802200 cites W2102967864 @default.
- W2755802200 cites W2106625078 @default.
- W2755802200 cites W2109222446 @default.
- W2755802200 cites W2112173609 @default.
- W2755802200 cites W2114303224 @default.
- W2755802200 cites W2122048769 @default.
- W2755802200 cites W2123866731 @default.
- W2755802200 cites W2125529470 @default.
- W2755802200 cites W2131975293 @default.
- W2755802200 cites W2132511032 @default.
- W2755802200 cites W2149804187 @default.
- W2755802200 cites W2154138844 @default.
- W2755802200 cites W2173213060 @default.
- W2755802200 cites W2270203991 @default.
- W2755802200 cites W2435648513 @default.
- W2755802200 cites W2542459869 @default.
- W2755802200 doi "https://doi.org/10.1109/bigdatacongress.2017.26" @default.
- W2755802200 hasPublicationYear "2017" @default.
- W2755802200 type Work @default.
- W2755802200 sameAs 2755802200 @default.
- W2755802200 citedByCount "3" @default.
- W2755802200 countsByYear W27558022002019 @default.
- W2755802200 countsByYear W27558022002020 @default.
- W2755802200 countsByYear W27558022002022 @default.
- W2755802200 crossrefType "proceedings-article" @default.
- W2755802200 hasAuthorship W2755802200A5006977915 @default.
- W2755802200 hasAuthorship W2755802200A5032299527 @default.
- W2755802200 hasAuthorship W2755802200A5037802216 @default.
- W2755802200 hasAuthorship W2755802200A5040126908 @default.
- W2755802200 hasAuthorship W2755802200A5052418518 @default.
- W2755802200 hasAuthorship W2755802200A5059248852 @default.
- W2755802200 hasAuthorship W2755802200A5072685183 @default.
- W2755802200 hasAuthorship W2755802200A5076157365 @default.
- W2755802200 hasAuthorship W2755802200A5080323905 @default.
- W2755802200 hasAuthorship W2755802200A5084820862 @default.
- W2755802200 hasConcept C111919701 @default.
- W2755802200 hasConcept C11413529 @default.
- W2755802200 hasConcept C127413603 @default.
- W2755802200 hasConcept C173608175 @default.
- W2755802200 hasConcept C199360897 @default.
- W2755802200 hasConcept C24394798 @default.
- W2755802200 hasConcept C2778692605 @default.
- W2755802200 hasConcept C2781215313 @default.
- W2755802200 hasConcept C41008148 @default.
- W2755802200 hasConcept C45374587 @default.
- W2755802200 hasConcept C48044578 @default.
- W2755802200 hasConcept C510870499 @default.
- W2755802200 hasConcept C5655090 @default.
- W2755802200 hasConcept C62611344 @default.
- W2755802200 hasConcept C66938386 @default.
- W2755802200 hasConcept C68339613 @default.
- W2755802200 hasConcept C75684735 @default.
- W2755802200 hasConcept C77088390 @default.
- W2755802200 hasConcept C79158427 @default.
- W2755802200 hasConceptScore W2755802200C111919701 @default.
- W2755802200 hasConceptScore W2755802200C11413529 @default.
- W2755802200 hasConceptScore W2755802200C127413603 @default.
- W2755802200 hasConceptScore W2755802200C173608175 @default.
- W2755802200 hasConceptScore W2755802200C199360897 @default.
- W2755802200 hasConceptScore W2755802200C24394798 @default.
- W2755802200 hasConceptScore W2755802200C2778692605 @default.
- W2755802200 hasConceptScore W2755802200C2781215313 @default.
- W2755802200 hasConceptScore W2755802200C41008148 @default.
- W2755802200 hasConceptScore W2755802200C45374587 @default.
- W2755802200 hasConceptScore W2755802200C48044578 @default.
- W2755802200 hasConceptScore W2755802200C510870499 @default.
- W2755802200 hasConceptScore W2755802200C5655090 @default.
- W2755802200 hasConceptScore W2755802200C62611344 @default.
- W2755802200 hasConceptScore W2755802200C66938386 @default.
- W2755802200 hasConceptScore W2755802200C68339613 @default.
- W2755802200 hasConceptScore W2755802200C75684735 @default.
- W2755802200 hasConceptScore W2755802200C77088390 @default.
- W2755802200 hasConceptScore W2755802200C79158427 @default.
- W2755802200 hasLocation W27558022001 @default.
- W2755802200 hasOpenAccess W2755802200 @default.
- W2755802200 hasPrimaryLocation W27558022001 @default.