Matches in SemOpenAlex for { <https://semopenalex.org/work/W2755925002> ?p ?o ?g. }
- W2755925002 abstract "Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their appearance are often subtle and only detectable at the right location and scales. Existing re-id models, particularly the recently proposed deep learning based ones match people at a single scale. In contrast, in this paper, a novel multi-scale deep learning model is proposed. Our model is able to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for matching. The importance of different spatial locations for extracting discriminative features is also learned explicitly. Experiments are carried out to demonstrate that the proposed model outperforms the state-of-the art on a number of benchmarks" @default.
- W2755925002 created "2017-09-25" @default.
- W2755925002 creator A5003418019 @default.
- W2755925002 creator A5014436524 @default.
- W2755925002 creator A5047962986 @default.
- W2755925002 creator A5074032555 @default.
- W2755925002 creator A5084959430 @default.
- W2755925002 date "2017-09-15" @default.
- W2755925002 modified "2023-10-17" @default.
- W2755925002 title "Multi-scale Deep Learning Architectures for Person Re-identification" @default.
- W2755925002 cites W1518138188 @default.
- W2755925002 cites W1928419358 @default.
- W2755925002 cites W1935991141 @default.
- W2755925002 cites W1949591461 @default.
- W2755925002 cites W1979260620 @default.
- W2755925002 cites W1982925187 @default.
- W2755925002 cites W2014764728 @default.
- W2755925002 cites W2019370496 @default.
- W2755925002 cites W2022469758 @default.
- W2755925002 cites W2023986434 @default.
- W2755925002 cites W2037865596 @default.
- W2755925002 cites W2068042582 @default.
- W2755925002 cites W2122243179 @default.
- W2755925002 cites W2144764737 @default.
- W2755925002 cites W2168356304 @default.
- W2755925002 cites W2170161511 @default.
- W2755925002 cites W2171810632 @default.
- W2755925002 cites W2201508557 @default.
- W2755925002 cites W2274287116 @default.
- W2755925002 cites W2294485609 @default.
- W2755925002 cites W2339827301 @default.
- W2755925002 cites W2342611082 @default.
- W2755925002 cites W2519373641 @default.
- W2755925002 cites W2541389513 @default.
- W2755925002 cites W2949117887 @default.
- W2755925002 cites W2949605076 @default.
- W2755925002 cites W2949987032 @default.
- W2755925002 cites W2950094539 @default.
- W2755925002 cites W2950179405 @default.
- W2755925002 cites W2951527505 @default.
- W2755925002 cites W3100555577 @default.
- W2755925002 cites W41482161 @default.
- W2755925002 cites W42769906 @default.
- W2755925002 doi "https://doi.org/10.48550/arxiv.1709.05165" @default.
- W2755925002 hasPublicationYear "2017" @default.
- W2755925002 type Work @default.
- W2755925002 sameAs 2755925002 @default.
- W2755925002 citedByCount "9" @default.
- W2755925002 countsByYear W27559250022018 @default.
- W2755925002 countsByYear W27559250022019 @default.
- W2755925002 countsByYear W27559250022020 @default.
- W2755925002 crossrefType "posted-content" @default.
- W2755925002 hasAuthorship W2755925002A5003418019 @default.
- W2755925002 hasAuthorship W2755925002A5014436524 @default.
- W2755925002 hasAuthorship W2755925002A5047962986 @default.
- W2755925002 hasAuthorship W2755925002A5074032555 @default.
- W2755925002 hasAuthorship W2755925002A5084959430 @default.
- W2755925002 hasBestOaLocation W27559250021 @default.
- W2755925002 hasConcept C105795698 @default.
- W2755925002 hasConcept C108583219 @default.
- W2755925002 hasConcept C116834253 @default.
- W2755925002 hasConcept C119857082 @default.
- W2755925002 hasConcept C138885662 @default.
- W2755925002 hasConcept C153180895 @default.
- W2755925002 hasConcept C154945302 @default.
- W2755925002 hasConcept C165064840 @default.
- W2755925002 hasConcept C205649164 @default.
- W2755925002 hasConcept C2776401178 @default.
- W2755925002 hasConcept C2776502983 @default.
- W2755925002 hasConcept C2778755073 @default.
- W2755925002 hasConcept C33923547 @default.
- W2755925002 hasConcept C41008148 @default.
- W2755925002 hasConcept C41895202 @default.
- W2755925002 hasConcept C58640448 @default.
- W2755925002 hasConcept C59404180 @default.
- W2755925002 hasConcept C59822182 @default.
- W2755925002 hasConcept C86803240 @default.
- W2755925002 hasConcept C97931131 @default.
- W2755925002 hasConceptScore W2755925002C105795698 @default.
- W2755925002 hasConceptScore W2755925002C108583219 @default.
- W2755925002 hasConceptScore W2755925002C116834253 @default.
- W2755925002 hasConceptScore W2755925002C119857082 @default.
- W2755925002 hasConceptScore W2755925002C138885662 @default.
- W2755925002 hasConceptScore W2755925002C153180895 @default.
- W2755925002 hasConceptScore W2755925002C154945302 @default.
- W2755925002 hasConceptScore W2755925002C165064840 @default.
- W2755925002 hasConceptScore W2755925002C205649164 @default.
- W2755925002 hasConceptScore W2755925002C2776401178 @default.
- W2755925002 hasConceptScore W2755925002C2776502983 @default.
- W2755925002 hasConceptScore W2755925002C2778755073 @default.
- W2755925002 hasConceptScore W2755925002C33923547 @default.
- W2755925002 hasConceptScore W2755925002C41008148 @default.
- W2755925002 hasConceptScore W2755925002C41895202 @default.
- W2755925002 hasConceptScore W2755925002C58640448 @default.
- W2755925002 hasConceptScore W2755925002C59404180 @default.
- W2755925002 hasConceptScore W2755925002C59822182 @default.
- W2755925002 hasConceptScore W2755925002C86803240 @default.
- W2755925002 hasConceptScore W2755925002C97931131 @default.
- W2755925002 hasLocation W27559250021 @default.
- W2755925002 hasLocation W27559250022 @default.