Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756040643> ?p ?o ?g. }
- W2756040643 endingPage "e0184321" @default.
- W2756040643 startingPage "e0184321" @default.
- W2756040643 abstract "Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column-ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process.We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios.The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology." @default.
- W2756040643 created "2017-09-25" @default.
- W2756040643 creator A5010131348 @default.
- W2756040643 creator A5018712091 @default.
- W2756040643 creator A5059606670 @default.
- W2756040643 creator A5060203954 @default.
- W2756040643 creator A5073222532 @default.
- W2756040643 creator A5075610512 @default.
- W2756040643 date "2017-09-14" @default.
- W2756040643 modified "2023-09-24" @default.
- W2756040643 title "A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations" @default.
- W2756040643 cites W1981716522 @default.
- W2756040643 cites W2004287953 @default.
- W2756040643 cites W2037327377 @default.
- W2756040643 cites W2042193739 @default.
- W2756040643 cites W2049633694 @default.
- W2756040643 cites W2051693933 @default.
- W2756040643 cites W2062038148 @default.
- W2756040643 cites W2080061737 @default.
- W2756040643 cites W2085091160 @default.
- W2756040643 cites W2089184781 @default.
- W2756040643 cites W2109606373 @default.
- W2756040643 cites W2137745608 @default.
- W2756040643 cites W2145188472 @default.
- W2756040643 cites W2787894218 @default.
- W2756040643 cites W2125573977 @default.
- W2756040643 doi "https://doi.org/10.1371/journal.pone.0184321" @default.
- W2756040643 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5598980" @default.
- W2756040643 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28910313" @default.
- W2756040643 hasPublicationYear "2017" @default.
- W2756040643 type Work @default.
- W2756040643 sameAs 2756040643 @default.
- W2756040643 citedByCount "7" @default.
- W2756040643 countsByYear W27560406432019 @default.
- W2756040643 countsByYear W27560406432020 @default.
- W2756040643 countsByYear W27560406432021 @default.
- W2756040643 countsByYear W27560406432022 @default.
- W2756040643 crossrefType "journal-article" @default.
- W2756040643 hasAuthorship W2756040643A5010131348 @default.
- W2756040643 hasAuthorship W2756040643A5018712091 @default.
- W2756040643 hasAuthorship W2756040643A5059606670 @default.
- W2756040643 hasAuthorship W2756040643A5060203954 @default.
- W2756040643 hasAuthorship W2756040643A5073222532 @default.
- W2756040643 hasAuthorship W2756040643A5075610512 @default.
- W2756040643 hasBestOaLocation W27560406431 @default.
- W2756040643 hasConcept C104047586 @default.
- W2756040643 hasConcept C111919701 @default.
- W2756040643 hasConcept C115961682 @default.
- W2756040643 hasConcept C116834253 @default.
- W2756040643 hasConcept C124101348 @default.
- W2756040643 hasConcept C153180895 @default.
- W2756040643 hasConcept C154945302 @default.
- W2756040643 hasConcept C169258074 @default.
- W2756040643 hasConcept C17212007 @default.
- W2756040643 hasConcept C191178318 @default.
- W2756040643 hasConcept C199360897 @default.
- W2756040643 hasConcept C41008148 @default.
- W2756040643 hasConcept C43521106 @default.
- W2756040643 hasConcept C46576248 @default.
- W2756040643 hasConcept C59822182 @default.
- W2756040643 hasConcept C73555534 @default.
- W2756040643 hasConcept C86803240 @default.
- W2756040643 hasConcept C98045186 @default.
- W2756040643 hasConceptScore W2756040643C104047586 @default.
- W2756040643 hasConceptScore W2756040643C111919701 @default.
- W2756040643 hasConceptScore W2756040643C115961682 @default.
- W2756040643 hasConceptScore W2756040643C116834253 @default.
- W2756040643 hasConceptScore W2756040643C124101348 @default.
- W2756040643 hasConceptScore W2756040643C153180895 @default.
- W2756040643 hasConceptScore W2756040643C154945302 @default.
- W2756040643 hasConceptScore W2756040643C169258074 @default.
- W2756040643 hasConceptScore W2756040643C17212007 @default.
- W2756040643 hasConceptScore W2756040643C191178318 @default.
- W2756040643 hasConceptScore W2756040643C199360897 @default.
- W2756040643 hasConceptScore W2756040643C41008148 @default.
- W2756040643 hasConceptScore W2756040643C43521106 @default.
- W2756040643 hasConceptScore W2756040643C46576248 @default.
- W2756040643 hasConceptScore W2756040643C59822182 @default.
- W2756040643 hasConceptScore W2756040643C73555534 @default.
- W2756040643 hasConceptScore W2756040643C86803240 @default.
- W2756040643 hasConceptScore W2756040643C98045186 @default.
- W2756040643 hasFunder F4320320879 @default.
- W2756040643 hasIssue "9" @default.
- W2756040643 hasLocation W27560406431 @default.
- W2756040643 hasLocation W27560406432 @default.
- W2756040643 hasLocation W27560406433 @default.
- W2756040643 hasLocation W27560406434 @default.
- W2756040643 hasLocation W27560406435 @default.
- W2756040643 hasLocation W27560406436 @default.
- W2756040643 hasLocation W27560406437 @default.
- W2756040643 hasOpenAccess W2756040643 @default.
- W2756040643 hasPrimaryLocation W27560406431 @default.
- W2756040643 hasRelatedWork W2186523764 @default.
- W2756040643 hasRelatedWork W2187492663 @default.
- W2756040643 hasRelatedWork W2368219397 @default.
- W2756040643 hasRelatedWork W2394022327 @default.
- W2756040643 hasRelatedWork W2503866109 @default.
- W2756040643 hasRelatedWork W2959625647 @default.