Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756260525> ?p ?o ?g. }
- W2756260525 abstract "In order to fully characterize the genome of an individual, the reconstruction of the two distinct copies of each chromosome, called haplotypes, is essential. The computational problem of inferring the full haplotype of a cell starting from read sequencing data is known as haplotype assembly, and consists in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chromosomes. Indeed, the knowledge of complete haplotypes is generally more informative than analyzing single SNPs and plays a fundamental role in many medical applications. To reconstruct the two haplotypes, we addressed the weighted Minimum Error Correction (wMEC) problem, which is a successful approach for haplotype assembly. This NP-hard problem consists in computing the two haplotypes that partition the sequencing reads into two disjoint sub-sets, with the least number of corrections to the SNP values. To this aim, we propose here GenHap, a novel computational method for haplotype assembly based on Genetic Algorithms, yielding optimal solutions by means of a global search process. In order to evaluate the effectiveness of our approach, we run GenHap on two synthetic (yet realistic) datasets, based on the Roche/454 and PacBio RS II sequencing technologies. We compared the performance of GenHap against HapCol, an efficient state-of-the-art algorithm for haplotype phasing. Our results show that GenHap always obtains high accuracy solutions (in terms of haplotype error rate), and is up to 4× faster than HapCol in the case of Roche/454 instances and up to 20× faster when compared on the PacBio RS II dataset. Finally, we assessed the performance of GenHap on two different real datasets. Future-generation sequencing technologies, producing longer reads with higher coverage, can highly benefit from GenHap, thanks to its capability of efficiently solving large instances of the haplotype assembly problem. Moreover, the optimization approach proposed in GenHap can be extended to the study of allele-specific genomic features, such as expression, methylation and chromatin conformation, by exploiting multi-objective optimization techniques. The source code and the full documentation are available at the following GitHub repository: https://github.com/andrea-tango/GenHap ." @default.
- W2756260525 created "2017-09-25" @default.
- W2756260525 creator A5013723473 @default.
- W2756260525 creator A5026770450 @default.
- W2756260525 creator A5043650939 @default.
- W2756260525 creator A5056055676 @default.
- W2756260525 creator A5056748708 @default.
- W2756260525 creator A5072712347 @default.
- W2756260525 creator A5073163964 @default.
- W2756260525 creator A5081323030 @default.
- W2756260525 creator A5081459146 @default.
- W2756260525 date "2019-04-01" @default.
- W2756260525 modified "2023-10-11" @default.
- W2756260525 title "GenHap: a novel computational method based on genetic algorithms for haplotype assembly" @default.
- W2756260525 cites W1508985588 @default.
- W2756260525 cites W1590384947 @default.
- W2756260525 cites W1771331356 @default.
- W2756260525 cites W1965464420 @default.
- W2756260525 cites W1966936568 @default.
- W2756260525 cites W1978136801 @default.
- W2756260525 cites W2007772656 @default.
- W2756260525 cites W2012811541 @default.
- W2756260525 cites W2022316530 @default.
- W2756260525 cites W2022485595 @default.
- W2756260525 cites W2033837064 @default.
- W2756260525 cites W2036815225 @default.
- W2756260525 cites W2039716761 @default.
- W2756260525 cites W2042404031 @default.
- W2756260525 cites W2060965924 @default.
- W2756260525 cites W2066669827 @default.
- W2756260525 cites W2067677152 @default.
- W2756260525 cites W2101645771 @default.
- W2756260525 cites W2102668767 @default.
- W2756260525 cites W2105046484 @default.
- W2756260525 cites W2108234281 @default.
- W2756260525 cites W2110772696 @default.
- W2756260525 cites W2114299767 @default.
- W2756260525 cites W2117400776 @default.
- W2756260525 cites W2117608012 @default.
- W2756260525 cites W2120126913 @default.
- W2756260525 cites W2121729186 @default.
- W2756260525 cites W2126948011 @default.
- W2756260525 cites W2129326667 @default.
- W2756260525 cites W2141637710 @default.
- W2756260525 cites W2142642738 @default.
- W2756260525 cites W2147733682 @default.
- W2756260525 cites W2149992227 @default.
- W2756260525 cites W2152664025 @default.
- W2756260525 cites W2160853127 @default.
- W2756260525 cites W2195724570 @default.
- W2756260525 cites W2233072870 @default.
- W2756260525 cites W2346085630 @default.
- W2756260525 cites W2509901086 @default.
- W2756260525 cites W2550586733 @default.
- W2756260525 cites W2593934358 @default.
- W2756260525 cites W2782863613 @default.
- W2756260525 cites W2787788280 @default.
- W2756260525 cites W2807650601 @default.
- W2756260525 cites W2950570768 @default.
- W2756260525 cites W4231539689 @default.
- W2756260525 doi "https://doi.org/10.1186/s12859-019-2691-y" @default.
- W2756260525 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6471693" @default.
- W2756260525 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30999845" @default.
- W2756260525 hasPublicationYear "2019" @default.
- W2756260525 type Work @default.
- W2756260525 sameAs 2756260525 @default.
- W2756260525 citedByCount "26" @default.
- W2756260525 countsByYear W27562605252018 @default.
- W2756260525 countsByYear W27562605252019 @default.
- W2756260525 countsByYear W27562605252020 @default.
- W2756260525 countsByYear W27562605252021 @default.
- W2756260525 countsByYear W27562605252022 @default.
- W2756260525 countsByYear W27562605252023 @default.
- W2756260525 crossrefType "journal-article" @default.
- W2756260525 hasAuthorship W2756260525A5013723473 @default.
- W2756260525 hasAuthorship W2756260525A5026770450 @default.
- W2756260525 hasAuthorship W2756260525A5043650939 @default.
- W2756260525 hasAuthorship W2756260525A5056055676 @default.
- W2756260525 hasAuthorship W2756260525A5056748708 @default.
- W2756260525 hasAuthorship W2756260525A5072712347 @default.
- W2756260525 hasAuthorship W2756260525A5073163964 @default.
- W2756260525 hasAuthorship W2756260525A5081323030 @default.
- W2756260525 hasAuthorship W2756260525A5081459146 @default.
- W2756260525 hasBestOaLocation W27562605251 @default.
- W2756260525 hasConcept C104317684 @default.
- W2756260525 hasConcept C11413529 @default.
- W2756260525 hasConcept C135763542 @default.
- W2756260525 hasConcept C153209595 @default.
- W2756260525 hasConcept C180754005 @default.
- W2756260525 hasConcept C197754878 @default.
- W2756260525 hasConcept C41008148 @default.
- W2756260525 hasConcept C44432683 @default.
- W2756260525 hasConcept C54355233 @default.
- W2756260525 hasConcept C70721500 @default.
- W2756260525 hasConcept C86803240 @default.
- W2756260525 hasConceptScore W2756260525C104317684 @default.
- W2756260525 hasConceptScore W2756260525C11413529 @default.
- W2756260525 hasConceptScore W2756260525C135763542 @default.
- W2756260525 hasConceptScore W2756260525C153209595 @default.
- W2756260525 hasConceptScore W2756260525C180754005 @default.