Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756278964> ?p ?o ?g. }
- W2756278964 endingPage "853" @default.
- W2756278964 startingPage "839" @default.
- W2756278964 abstract "With detailed chemical kinetics being employed in combustion simulations, its major computational challenge is the time-intensive nature of chemical kinetics integration due to the large number of chemical species and wide range of chemical timescales involved. In this work, an extended tabulated dynamic chemistry approach with dynamic pruning method is carried out to simulate complex spray combustion for non-premixed combustion process. The thought of extended tabulated dynamic chemistry approach with dynamic pruning is achieved by selecting the optimum acceleration method as well as its error tolerances at different combustion stages depending on combustion characteristics involving the low-temperature combustion. The present method is applied to realistically complex combustion systems involving spray flame of n-heptane fuel and non-premixed combustion engine. Computation efficiency of the proposed method is compared with the results using different accelerating methods, including dynamical adaptive chemistry, in situ adaptive tabulation, and coupled method of tabulated dynamical adaptive chemistry. The results show that transient computational cost will decrease for low-temperature combustion by reducing ambient oxygen concentration clearly in spray flame. Meanwhile, very low computational efficiency is presented once the autoignition occurs, especially at the initial oxygen concentration of 21%. Based on the feature, extended tabulated dynamic chemistry approach with dynamic pruning with different dynamic adaptive chemistry error tolerances is proposed to improve computational efficiency. Extended tabulated dynamic chemistry approach with dynamic pruning with larger error tolerance [Formula: see text] improves around two times for decreased amplitude of transient computational cost at high-temperature combustion stage, and at the same time, the computational accuracy is also improved by comparing the important intermediate species obtained by direct integration. For applications in diesel engine, the results show that extended tabulated dynamic chemistry approach with dynamic pruning can accurately capture the first-stage ignition feature that determines the high-temperature combustion stage. In addition, extended tabulated dynamic chemistry approach with dynamic pruning with the smaller in situ adaptive tabulation error tolerance of 0.001 only used at the high-temperature combustion stage significantly improves the performance on diesel engine simulation with a larger chemistry mechanism. The present method further significantly improves computational efficiency with an overall speedup factor of 10 with high-accuracy compared with result using direct integration." @default.
- W2756278964 created "2017-09-25" @default.
- W2756278964 creator A5023261675 @default.
- W2756278964 creator A5038776919 @default.
- W2756278964 creator A5088573265 @default.
- W2756278964 date "2017-09-18" @default.
- W2756278964 modified "2023-10-16" @default.
- W2756278964 title "Effect of improved accelerating method on efficient chemistry calculations in diesel engine" @default.
- W2756278964 cites W1520097462 @default.
- W2756278964 cites W1578482303 @default.
- W2756278964 cites W1965258398 @default.
- W2756278964 cites W1965963495 @default.
- W2756278964 cites W1969466261 @default.
- W2756278964 cites W1987117213 @default.
- W2756278964 cites W1987265711 @default.
- W2756278964 cites W1997749625 @default.
- W2756278964 cites W1999010882 @default.
- W2756278964 cites W2005631879 @default.
- W2756278964 cites W2005803020 @default.
- W2756278964 cites W2006413412 @default.
- W2756278964 cites W2009438251 @default.
- W2756278964 cites W2016164403 @default.
- W2756278964 cites W2020534756 @default.
- W2756278964 cites W2021117057 @default.
- W2756278964 cites W2041054636 @default.
- W2756278964 cites W2048213309 @default.
- W2756278964 cites W2048384680 @default.
- W2756278964 cites W2048487219 @default.
- W2756278964 cites W2052495929 @default.
- W2756278964 cites W2056916628 @default.
- W2756278964 cites W2063340468 @default.
- W2756278964 cites W2065615465 @default.
- W2756278964 cites W2065804960 @default.
- W2756278964 cites W2073318705 @default.
- W2756278964 cites W2073527195 @default.
- W2756278964 cites W2077237809 @default.
- W2756278964 cites W2077450469 @default.
- W2756278964 cites W2089609719 @default.
- W2756278964 cites W2091915157 @default.
- W2756278964 cites W2099772035 @default.
- W2756278964 cites W2113416368 @default.
- W2756278964 cites W2124755620 @default.
- W2756278964 cites W2213588566 @default.
- W2756278964 cites W2233416271 @default.
- W2756278964 cites W2324986918 @default.
- W2756278964 cites W2524775725 @default.
- W2756278964 cites W2527559332 @default.
- W2756278964 cites W2530644871 @default.
- W2756278964 cites W280615693 @default.
- W2756278964 doi "https://doi.org/10.1177/1468087417731438" @default.
- W2756278964 hasPublicationYear "2017" @default.
- W2756278964 type Work @default.
- W2756278964 sameAs 2756278964 @default.
- W2756278964 citedByCount "2" @default.
- W2756278964 countsByYear W27562789642020 @default.
- W2756278964 countsByYear W27562789642021 @default.
- W2756278964 crossrefType "journal-article" @default.
- W2756278964 hasAuthorship W2756278964A5023261675 @default.
- W2756278964 hasAuthorship W2756278964A5038776919 @default.
- W2756278964 hasAuthorship W2756278964A5088573265 @default.
- W2756278964 hasConcept C105923489 @default.
- W2756278964 hasConcept C11413529 @default.
- W2756278964 hasConcept C117896860 @default.
- W2756278964 hasConcept C121332964 @default.
- W2756278964 hasConcept C147789679 @default.
- W2756278964 hasConcept C185592680 @default.
- W2756278964 hasConcept C41008148 @default.
- W2756278964 hasConcept C45374587 @default.
- W2756278964 hasConcept C57879066 @default.
- W2756278964 hasConcept C64127748 @default.
- W2756278964 hasConcept C74650414 @default.
- W2756278964 hasConcept C97355855 @default.
- W2756278964 hasConceptScore W2756278964C105923489 @default.
- W2756278964 hasConceptScore W2756278964C11413529 @default.
- W2756278964 hasConceptScore W2756278964C117896860 @default.
- W2756278964 hasConceptScore W2756278964C121332964 @default.
- W2756278964 hasConceptScore W2756278964C147789679 @default.
- W2756278964 hasConceptScore W2756278964C185592680 @default.
- W2756278964 hasConceptScore W2756278964C41008148 @default.
- W2756278964 hasConceptScore W2756278964C45374587 @default.
- W2756278964 hasConceptScore W2756278964C57879066 @default.
- W2756278964 hasConceptScore W2756278964C64127748 @default.
- W2756278964 hasConceptScore W2756278964C74650414 @default.
- W2756278964 hasConceptScore W2756278964C97355855 @default.
- W2756278964 hasIssue "8" @default.
- W2756278964 hasLocation W27562789641 @default.
- W2756278964 hasOpenAccess W2756278964 @default.
- W2756278964 hasPrimaryLocation W27562789641 @default.
- W2756278964 hasRelatedWork W2062801145 @default.
- W2756278964 hasRelatedWork W2103342751 @default.
- W2756278964 hasRelatedWork W2261733622 @default.
- W2756278964 hasRelatedWork W2354062721 @default.
- W2756278964 hasRelatedWork W2382877380 @default.
- W2756278964 hasRelatedWork W2748952813 @default.
- W2756278964 hasRelatedWork W2899084033 @default.
- W2756278964 hasRelatedWork W2950792687 @default.
- W2756278964 hasRelatedWork W355141821 @default.
- W2756278964 hasRelatedWork W4289244034 @default.