Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756283039> ?p ?o ?g. }
- W2756283039 endingPage "430" @default.
- W2756283039 startingPage "411" @default.
- W2756283039 abstract "This paper presents a neural network (NN)-based surrogate modeling approach suitable for the geometrically nonlinear analysis of carbon nanotubes (CNTs). In this work we propose an NN-based equivalent beam element (NN-EBE) which is capable of accurately predicting the high-order phenomena caused by size-effects that characterize the behavior of CNTs at the nano-scale and can only be predicted by micro-mechanical models. The basic idea is to approximate the residual forces of the Newton–Raphson incremental-iterative formulation of the classical Euler or Timoshenko beams of the EBE model by an NN prediction, which is based on the response of the detailed MSM model of a CNT portion. Several numerical examples are presented for straight and wavy CNTs under bending and compression, which demonstrate that the proposed methodology is possible to efficiently predict the nonlinear response of large-scale CNT structures in a fraction computing time compared to the full-scale problem." @default.
- W2756283039 created "2017-09-25" @default.
- W2756283039 creator A5005508184 @default.
- W2756283039 creator A5006161716 @default.
- W2756283039 creator A5078374061 @default.
- W2756283039 creator A5087940961 @default.
- W2756283039 date "2018-01-01" @default.
- W2756283039 modified "2023-09-26" @default.
- W2756283039 title "A neural network-based surrogate model for carbon nanotubes with geometric nonlinearities" @default.
- W2756283039 cites W1964607590 @default.
- W2756283039 cites W1967791013 @default.
- W2756283039 cites W1969420907 @default.
- W2756283039 cites W1970818803 @default.
- W2756283039 cites W1975613240 @default.
- W2756283039 cites W1978470638 @default.
- W2756283039 cites W1981011334 @default.
- W2756283039 cites W1988255219 @default.
- W2756283039 cites W1991035008 @default.
- W2756283039 cites W1995735117 @default.
- W2756283039 cites W1998278700 @default.
- W2756283039 cites W2001186848 @default.
- W2756283039 cites W2003946565 @default.
- W2756283039 cites W2008030554 @default.
- W2756283039 cites W2018187134 @default.
- W2756283039 cites W2018858346 @default.
- W2756283039 cites W2018873694 @default.
- W2756283039 cites W2019579526 @default.
- W2756283039 cites W2020303929 @default.
- W2756283039 cites W2021052111 @default.
- W2756283039 cites W2022150354 @default.
- W2756283039 cites W2022278879 @default.
- W2756283039 cites W2022505640 @default.
- W2756283039 cites W2023933481 @default.
- W2756283039 cites W2024302451 @default.
- W2756283039 cites W2025161486 @default.
- W2756283039 cites W2026389134 @default.
- W2756283039 cites W2031265434 @default.
- W2756283039 cites W2031551886 @default.
- W2756283039 cites W2033305455 @default.
- W2756283039 cites W2037429506 @default.
- W2756283039 cites W2043938607 @default.
- W2756283039 cites W2047465806 @default.
- W2756283039 cites W2048658214 @default.
- W2756283039 cites W2049652788 @default.
- W2756283039 cites W2053129953 @default.
- W2756283039 cites W2053699762 @default.
- W2756283039 cites W2060399852 @default.
- W2756283039 cites W2066710427 @default.
- W2756283039 cites W2073417320 @default.
- W2756283039 cites W2074951219 @default.
- W2756283039 cites W2079511045 @default.
- W2756283039 cites W2079636607 @default.
- W2756283039 cites W2085709944 @default.
- W2756283039 cites W2086733907 @default.
- W2756283039 cites W2087070363 @default.
- W2756283039 cites W2093284951 @default.
- W2756283039 cites W2110589863 @default.
- W2756283039 cites W2119255263 @default.
- W2756283039 cites W2122199548 @default.
- W2756283039 cites W2129857248 @default.
- W2756283039 cites W2140964090 @default.
- W2756283039 cites W2143268635 @default.
- W2756283039 cites W2152918965 @default.
- W2756283039 cites W2155482699 @default.
- W2756283039 doi "https://doi.org/10.1016/j.cma.2017.09.010" @default.
- W2756283039 hasPublicationYear "2018" @default.
- W2756283039 type Work @default.
- W2756283039 sameAs 2756283039 @default.
- W2756283039 citedByCount "46" @default.
- W2756283039 countsByYear W27562830392018 @default.
- W2756283039 countsByYear W27562830392019 @default.
- W2756283039 countsByYear W27562830392020 @default.
- W2756283039 countsByYear W27562830392021 @default.
- W2756283039 countsByYear W27562830392022 @default.
- W2756283039 countsByYear W27562830392023 @default.
- W2756283039 crossrefType "journal-article" @default.
- W2756283039 hasAuthorship W2756283039A5005508184 @default.
- W2756283039 hasAuthorship W2756283039A5006161716 @default.
- W2756283039 hasAuthorship W2756283039A5078374061 @default.
- W2756283039 hasAuthorship W2756283039A5087940961 @default.
- W2756283039 hasConcept C11413529 @default.
- W2756283039 hasConcept C121332964 @default.
- W2756283039 hasConcept C126255220 @default.
- W2756283039 hasConcept C127413603 @default.
- W2756283039 hasConcept C131675550 @default.
- W2756283039 hasConcept C134306372 @default.
- W2756283039 hasConcept C135628077 @default.
- W2756283039 hasConcept C154945302 @default.
- W2756283039 hasConcept C155512373 @default.
- W2756283039 hasConcept C158622935 @default.
- W2756283039 hasConcept C159985019 @default.
- W2756283039 hasConcept C168834538 @default.
- W2756283039 hasConcept C171250308 @default.
- W2756283039 hasConcept C180016635 @default.
- W2756283039 hasConcept C190699663 @default.
- W2756283039 hasConcept C192562407 @default.
- W2756283039 hasConcept C2778755073 @default.
- W2756283039 hasConcept C28826006 @default.