Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756372895> ?p ?o ?g. }
- W2756372895 abstract "Advances in numerical optimization have supported breakthroughs in several areas of signal processing. This paper focuses on the recent enhanced variants of the proximal gradient numerical optimization algorithm, which combine quasi-Newton methods with forward-adjoint oracles to tackle large-scale problems and reduce the computational burden of many applications. These proximal gradient algorithms are here described in an easy-to-understand way, illustrating how they are able to address a wide variety of problems arising in signal processing. A new high-level modeling language is presented which is used to demonstrate the versatility of the presented algorithms in a series of signal processing application examples such as sparse deconvolution, total variation denoising, audio de-clipping and others." @default.
- W2756372895 created "2017-09-25" @default.
- W2756372895 creator A5014576574 @default.
- W2756372895 creator A5028410511 @default.
- W2756372895 creator A5051849103 @default.
- W2756372895 creator A5061135303 @default.
- W2756372895 creator A5073284331 @default.
- W2756372895 date "2017-01-01" @default.
- W2756372895 modified "2023-10-02" @default.
- W2756372895 title "Proximal Gradient Algorithms: Applications in Signal Processing" @default.
- W2756372895 cites W144276833 @default.
- W2756372895 cites W1532777473 @default.
- W2756372895 cites W1543439990 @default.
- W2756372895 cites W1585773866 @default.
- W2756372895 cites W1593527211 @default.
- W2756372895 cites W1922442141 @default.
- W2756372895 cites W1946620893 @default.
- W2756372895 cites W1953936588 @default.
- W2756372895 cites W1967138577 @default.
- W2756372895 cites W1970986119 @default.
- W2756372895 cites W1972010412 @default.
- W2756372895 cites W1996215314 @default.
- W2756372895 cites W2001732520 @default.
- W2756372895 cites W2003372231 @default.
- W2756372895 cites W2004160833 @default.
- W2756372895 cites W2019569173 @default.
- W2756372895 cites W2028191993 @default.
- W2756372895 cites W2029362727 @default.
- W2756372895 cites W2030161963 @default.
- W2756372895 cites W2040992166 @default.
- W2756372895 cites W2056510226 @default.
- W2756372895 cites W205960364 @default.
- W2756372895 cites W2062320580 @default.
- W2756372895 cites W2079235685 @default.
- W2756372895 cites W2088411705 @default.
- W2756372895 cites W2088624648 @default.
- W2756372895 cites W2092663520 @default.
- W2756372895 cites W2100556411 @default.
- W2756372895 cites W2102019642 @default.
- W2756372895 cites W2112820497 @default.
- W2756372895 cites W2115706991 @default.
- W2756372895 cites W2118429861 @default.
- W2756372895 cites W2119667497 @default.
- W2756372895 cites W2120575449 @default.
- W2756372895 cites W2129516068 @default.
- W2756372895 cites W2135046866 @default.
- W2756372895 cites W2142694817 @default.
- W2756372895 cites W2145962650 @default.
- W2756372895 cites W2164278908 @default.
- W2756372895 cites W2168625863 @default.
- W2756372895 cites W2168660030 @default.
- W2756372895 cites W2171413647 @default.
- W2756372895 cites W2177716588 @default.
- W2756372895 cites W2178935672 @default.
- W2756372895 cites W2184634347 @default.
- W2756372895 cites W2222562092 @default.
- W2756372895 cites W2259139337 @default.
- W2756372895 cites W2288174618 @default.
- W2756372895 cites W2296153915 @default.
- W2756372895 cites W2763081248 @default.
- W2756372895 cites W2900403378 @default.
- W2756372895 cites W2913535645 @default.
- W2756372895 cites W2919115771 @default.
- W2756372895 cites W2963173886 @default.
- W2756372895 cites W2963888662 @default.
- W2756372895 cites W2963929357 @default.
- W2756372895 cites W3029645440 @default.
- W2756372895 cites W3099152187 @default.
- W2756372895 cites W3100913041 @default.
- W2756372895 cites W3103984481 @default.
- W2756372895 cites W3104684837 @default.
- W2756372895 cites W3123607434 @default.
- W2756372895 cites W3124367822 @default.
- W2756372895 cites W368469426 @default.
- W2756372895 cites W608274465 @default.
- W2756372895 hasPublicationYear "2017" @default.
- W2756372895 type Work @default.
- W2756372895 sameAs 2756372895 @default.
- W2756372895 citedByCount "9" @default.
- W2756372895 countsByYear W27563728952019 @default.
- W2756372895 countsByYear W27563728952020 @default.
- W2756372895 countsByYear W27563728952021 @default.
- W2756372895 crossrefType "posted-content" @default.
- W2756372895 hasAuthorship W2756372895A5014576574 @default.
- W2756372895 hasAuthorship W2756372895A5028410511 @default.
- W2756372895 hasAuthorship W2756372895A5051849103 @default.
- W2756372895 hasAuthorship W2756372895A5061135303 @default.
- W2756372895 hasAuthorship W2756372895A5073284331 @default.
- W2756372895 hasConcept C104267543 @default.
- W2756372895 hasConcept C11413529 @default.
- W2756372895 hasConcept C121332964 @default.
- W2756372895 hasConcept C137836250 @default.
- W2756372895 hasConcept C138885662 @default.
- W2756372895 hasConcept C153258448 @default.
- W2756372895 hasConcept C154945302 @default.
- W2756372895 hasConcept C174576160 @default.
- W2756372895 hasConcept C199360897 @default.
- W2756372895 hasConcept C2776848632 @default.
- W2756372895 hasConcept C2778755073 @default.
- W2756372895 hasConcept C2779843651 @default.