Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756405796> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2756405796 endingPage "451" @default.
- W2756405796 startingPage "442" @default.
- W2756405796 abstract "Radio frequency identification (RFID) has been widely used for the automatic identification, tracking and tracing of goods throughout the supply chain from the manufacturer to the customer. However, one technological problem that impedes the productive and reliable use of RFID is the constraint of false positive readings, which refers to tags that are detected accidentally by the reader but not the ones of interest. This paper focuses on the use of machine learning algorithms to identify such RFID readings. A total of 11 statistical features are extracted from received signal strength (RSS) and phase rotations derived from the raw RFID data. Each of the features is highly statistically different to distinguish the false positive readings, but satisfactory classification cannot be achieved when these features are considered individually. Classifiers based on logistic regression (LR), support vector machine (SVM) and decision tree (DT) are constructed, which combine all of the extracted features to classify the RFID readings more effectively. The performance of the classifiers is evaluated in a real-world factory. Results show that SVM provides the highest accuracy of up to 95.3%. DT shows slightly better accuracy (92.85%) than LR (92.75%), while LR has the larger area under the curve (0.976) than DT (0.949). Overall, machine learning algorithms could achieve accuracy of 93% on average. The proposed methodology provides a much more reliable RFID application as false-positive readings are detected immediately without human intervention, which enables a significant potential of fully automatic identification and tracking of goods throughout the supply chain." @default.
- W2756405796 created "2017-09-25" @default.
- W2756405796 creator A5007988448 @default.
- W2756405796 creator A5018827275 @default.
- W2756405796 creator A5020231071 @default.
- W2756405796 date "2018-01-01" @default.
- W2756405796 modified "2023-10-16" @default.
- W2756405796 title "Automatic detection of false positive RFID readings using machine learning algorithms" @default.
- W2756405796 cites W1964788147 @default.
- W2756405796 cites W1968960382 @default.
- W2756405796 cites W1969069964 @default.
- W2756405796 cites W1972897647 @default.
- W2756405796 cites W1993128363 @default.
- W2756405796 cites W2015849952 @default.
- W2756405796 cites W2017775298 @default.
- W2756405796 cites W2022895454 @default.
- W2756405796 cites W2035136797 @default.
- W2756405796 cites W2037104952 @default.
- W2756405796 cites W2071429552 @default.
- W2756405796 cites W2075801623 @default.
- W2756405796 cites W2077469820 @default.
- W2756405796 cites W2128633360 @default.
- W2756405796 cites W2153916392 @default.
- W2756405796 cites W2154285650 @default.
- W2756405796 cites W2161920802 @default.
- W2756405796 cites W2163993204 @default.
- W2756405796 cites W3001044503 @default.
- W2756405796 cites W4379358956 @default.
- W2756405796 doi "https://doi.org/10.1016/j.eswa.2017.09.021" @default.
- W2756405796 hasPublicationYear "2018" @default.
- W2756405796 type Work @default.
- W2756405796 sameAs 2756405796 @default.
- W2756405796 citedByCount "51" @default.
- W2756405796 countsByYear W27564057962018 @default.
- W2756405796 countsByYear W27564057962019 @default.
- W2756405796 countsByYear W27564057962020 @default.
- W2756405796 countsByYear W27564057962021 @default.
- W2756405796 countsByYear W27564057962022 @default.
- W2756405796 countsByYear W27564057962023 @default.
- W2756405796 crossrefType "journal-article" @default.
- W2756405796 hasAuthorship W2756405796A5007988448 @default.
- W2756405796 hasAuthorship W2756405796A5018827275 @default.
- W2756405796 hasAuthorship W2756405796A5020231071 @default.
- W2756405796 hasConcept C111919701 @default.
- W2756405796 hasConcept C11413529 @default.
- W2756405796 hasConcept C116834253 @default.
- W2756405796 hasConcept C119857082 @default.
- W2756405796 hasConcept C12267149 @default.
- W2756405796 hasConcept C124101348 @default.
- W2756405796 hasConcept C138673069 @default.
- W2756405796 hasConcept C153180895 @default.
- W2756405796 hasConcept C154945302 @default.
- W2756405796 hasConcept C204222849 @default.
- W2756405796 hasConcept C2385561 @default.
- W2756405796 hasConcept C38652104 @default.
- W2756405796 hasConcept C41008148 @default.
- W2756405796 hasConcept C59822182 @default.
- W2756405796 hasConcept C84525736 @default.
- W2756405796 hasConcept C86803240 @default.
- W2756405796 hasConceptScore W2756405796C111919701 @default.
- W2756405796 hasConceptScore W2756405796C11413529 @default.
- W2756405796 hasConceptScore W2756405796C116834253 @default.
- W2756405796 hasConceptScore W2756405796C119857082 @default.
- W2756405796 hasConceptScore W2756405796C12267149 @default.
- W2756405796 hasConceptScore W2756405796C124101348 @default.
- W2756405796 hasConceptScore W2756405796C138673069 @default.
- W2756405796 hasConceptScore W2756405796C153180895 @default.
- W2756405796 hasConceptScore W2756405796C154945302 @default.
- W2756405796 hasConceptScore W2756405796C204222849 @default.
- W2756405796 hasConceptScore W2756405796C2385561 @default.
- W2756405796 hasConceptScore W2756405796C38652104 @default.
- W2756405796 hasConceptScore W2756405796C41008148 @default.
- W2756405796 hasConceptScore W2756405796C59822182 @default.
- W2756405796 hasConceptScore W2756405796C84525736 @default.
- W2756405796 hasConceptScore W2756405796C86803240 @default.
- W2756405796 hasFunder F4320322725 @default.
- W2756405796 hasLocation W27564057961 @default.
- W2756405796 hasOpenAccess W2756405796 @default.
- W2756405796 hasPrimaryLocation W27564057961 @default.
- W2756405796 hasRelatedWork W2080567403 @default.
- W2756405796 hasRelatedWork W2358679991 @default.
- W2756405796 hasRelatedWork W2365639220 @default.
- W2756405796 hasRelatedWork W2374808384 @default.
- W2756405796 hasRelatedWork W2374952201 @default.
- W2756405796 hasRelatedWork W2382520895 @default.
- W2756405796 hasRelatedWork W2393709043 @default.
- W2756405796 hasRelatedWork W2539387137 @default.
- W2756405796 hasRelatedWork W4224922629 @default.
- W2756405796 hasRelatedWork W426968574 @default.
- W2756405796 hasVolume "91" @default.
- W2756405796 isParatext "false" @default.
- W2756405796 isRetracted "false" @default.
- W2756405796 magId "2756405796" @default.
- W2756405796 workType "article" @default.