Matches in SemOpenAlex for { <https://semopenalex.org/work/W2756943920> ?p ?o ?g. }
- W2756943920 abstract "The injection of CO2 has been in global use for enhanced oil recovery (EOR) as it can improve oil production in mature fields. It also has environmental benefits for reducing greenhouse carbon by permanently sequestrating CO2 (carbon capture and storage (CCS)) in reservoirs. As a part of numerical studies, this work proposed a novel application of an artificial neural network (ANN) to forecast the performance of a water-alternating-CO2 process and effectively manage the injected CO2 in a combined CCS–EOR project. Three targets including oil recovery, net CO2 storage, and cumulative gaseous CO2 production were quantitatively simulated by three separate ANN models for a series of injection frames of 5, 15, 25, and 35 cycles. The concurrent estimations of a sequence of outputs have shown a relevant application in scheduling the injection process based on the progressive profile of the targets. For a specific surface design, an increment of 5.8% oil recovery and 4% net CO2 storage was achieved from 25 cycles to 35 cycles, suggesting ending the injection at 25 cycles. Using the models, distinct optimizations were also computed for oil recovery and net CO2 sequestration in various reservoir conditions. The results expressed a maximum oil recovery from 22% to 30% oil in place (OIP) and around 21,000–29,000 tons of CO2 trapped underground after 35 cycles if the injection began at 60% water saturation. The new approach presented in this study of applying an ANN is obviously effective in forecasting and managing the entire CO2 injection process instead of a single output as presented in previous studies." @default.
- W2756943920 created "2017-10-06" @default.
- W2756943920 creator A5020058755 @default.
- W2756943920 creator A5045849679 @default.
- W2756943920 date "2017-10-19" @default.
- W2756943920 modified "2023-10-14" @default.
- W2756943920 title "Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks" @default.
- W2756943920 cites W1971441898 @default.
- W2756943920 cites W1977310803 @default.
- W2756943920 cites W1980000853 @default.
- W2756943920 cites W1984981661 @default.
- W2756943920 cites W1985494346 @default.
- W2756943920 cites W2000261664 @default.
- W2756943920 cites W2017760436 @default.
- W2756943920 cites W2017868205 @default.
- W2756943920 cites W2027889458 @default.
- W2756943920 cites W2034965148 @default.
- W2756943920 cites W2035067275 @default.
- W2756943920 cites W2041361218 @default.
- W2756943920 cites W2060324796 @default.
- W2756943920 cites W2061871963 @default.
- W2756943920 cites W2069586823 @default.
- W2756943920 cites W2070412752 @default.
- W2756943920 cites W2082198444 @default.
- W2756943920 cites W2082562745 @default.
- W2756943920 cites W2089559045 @default.
- W2756943920 cites W2090164487 @default.
- W2756943920 cites W2092075098 @default.
- W2756943920 cites W2092308968 @default.
- W2756943920 cites W2161878379 @default.
- W2756943920 cites W2196087534 @default.
- W2756943920 cites W2254123944 @default.
- W2756943920 cites W2256437107 @default.
- W2756943920 cites W2258948756 @default.
- W2756943920 cites W2285733579 @default.
- W2756943920 cites W2288231193 @default.
- W2756943920 cites W2301667080 @default.
- W2756943920 cites W2313453159 @default.
- W2756943920 cites W2315082805 @default.
- W2756943920 cites W2325777149 @default.
- W2756943920 cites W2328760282 @default.
- W2756943920 cites W2395957794 @default.
- W2756943920 cites W2466359547 @default.
- W2756943920 cites W2473564990 @default.
- W2756943920 cites W2488750392 @default.
- W2756943920 cites W2493734857 @default.
- W2756943920 cites W2520900658 @default.
- W2756943920 cites W2564058667 @default.
- W2756943920 cites W2567567674 @default.
- W2756943920 cites W800658455 @default.
- W2756943920 cites W826337915 @default.
- W2756943920 doi "https://doi.org/10.1115/1.4038054" @default.
- W2756943920 hasPublicationYear "2017" @default.
- W2756943920 type Work @default.
- W2756943920 sameAs 2756943920 @default.
- W2756943920 citedByCount "49" @default.
- W2756943920 countsByYear W27569439202018 @default.
- W2756943920 countsByYear W27569439202019 @default.
- W2756943920 countsByYear W27569439202020 @default.
- W2756943920 countsByYear W27569439202021 @default.
- W2756943920 countsByYear W27569439202023 @default.
- W2756943920 crossrefType "journal-article" @default.
- W2756943920 hasAuthorship W2756943920A5020058755 @default.
- W2756943920 hasAuthorship W2756943920A5045849679 @default.
- W2756943920 hasConcept C111368507 @default.
- W2756943920 hasConcept C111919701 @default.
- W2756943920 hasConcept C127313418 @default.
- W2756943920 hasConcept C127413603 @default.
- W2756943920 hasConcept C132651083 @default.
- W2756943920 hasConcept C154945302 @default.
- W2756943920 hasConcept C178790620 @default.
- W2756943920 hasConcept C185592680 @default.
- W2756943920 hasConcept C21880701 @default.
- W2756943920 hasConcept C22884784 @default.
- W2756943920 hasConcept C2778059233 @default.
- W2756943920 hasConcept C2778379663 @default.
- W2756943920 hasConcept C2779681308 @default.
- W2756943920 hasConcept C2984309096 @default.
- W2756943920 hasConcept C39432304 @default.
- W2756943920 hasConcept C41008148 @default.
- W2756943920 hasConcept C47737302 @default.
- W2756943920 hasConcept C50644808 @default.
- W2756943920 hasConcept C530467964 @default.
- W2756943920 hasConcept C78762247 @default.
- W2756943920 hasConcept C98045186 @default.
- W2756943920 hasConceptScore W2756943920C111368507 @default.
- W2756943920 hasConceptScore W2756943920C111919701 @default.
- W2756943920 hasConceptScore W2756943920C127313418 @default.
- W2756943920 hasConceptScore W2756943920C127413603 @default.
- W2756943920 hasConceptScore W2756943920C132651083 @default.
- W2756943920 hasConceptScore W2756943920C154945302 @default.
- W2756943920 hasConceptScore W2756943920C178790620 @default.
- W2756943920 hasConceptScore W2756943920C185592680 @default.
- W2756943920 hasConceptScore W2756943920C21880701 @default.
- W2756943920 hasConceptScore W2756943920C22884784 @default.
- W2756943920 hasConceptScore W2756943920C2778059233 @default.
- W2756943920 hasConceptScore W2756943920C2778379663 @default.
- W2756943920 hasConceptScore W2756943920C2779681308 @default.
- W2756943920 hasConceptScore W2756943920C2984309096 @default.
- W2756943920 hasConceptScore W2756943920C39432304 @default.