Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757202264> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2757202264 abstract "Medical image fusion is used to integrate the essential features present in different medical images into a single image to improve the clinical accuracy to take better decisions. Multimodal medical image fusion combines the images obtained from different modalities like Positron Emission Tomography (PET), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and others. CT scan provides detailed information on bony structures whereas MRI scan provides details on soft tissues. Fusion of these images is useful for doctors to diagnose and plan treatment for patients. Various methods have been proposed during recent years for medical image fusion but these methods suffer from the issue of fusion performance due to different sensor modalities. In this paper, we validate that for such images, fusion performance can be improved using a learning based fusion scheme which uses training and testing phase by considering pixel wise processing of image. In order to improve image fusion performance, here we implement fuzzy logic type-2 based approaches for medical image fusion for CT and MRI images. Final fused image is achieved by applying rule based method which includes fuzzification inference, type reduction, and defuzzification of the input image. Experiments are conducted by applying fuzzy logic type-1, neural network, Neuro-fuzzy approach and fuzzy logic type-2 based fusion scheme. Performance of image fusion based on Fuzzy Logic Type-2 is compared with other state-of-art techniques using various performance metrics such as Mutual information, standard deviation and edge based similarity. Experimental results shows that fuzzy logic Type-2 performs better when compared to neural network based approach." @default.
- W2757202264 created "2017-10-06" @default.
- W2757202264 creator A5033661594 @default.
- W2757202264 creator A5056511153 @default.
- W2757202264 date "2016-10-01" @default.
- W2757202264 modified "2023-10-14" @default.
- W2757202264 title "A novel approach for medical image fusion using fuzzy logic type-2" @default.
- W2757202264 cites W1554651806 @default.
- W2757202264 cites W1669864993 @default.
- W2757202264 cites W1969431382 @default.
- W2757202264 cites W1986231131 @default.
- W2757202264 cites W1996278907 @default.
- W2757202264 cites W1999316653 @default.
- W2757202264 cites W2010272715 @default.
- W2757202264 cites W2025202639 @default.
- W2757202264 cites W2068941797 @default.
- W2757202264 cites W2075654948 @default.
- W2757202264 cites W2087694538 @default.
- W2757202264 cites W2100604996 @default.
- W2757202264 cites W2106891293 @default.
- W2757202264 cites W2121219287 @default.
- W2757202264 cites W2144057131 @default.
- W2757202264 cites W2164170383 @default.
- W2757202264 cites W2171790797 @default.
- W2757202264 cites W26472752 @default.
- W2757202264 doi "https://doi.org/10.1109/cimca.2016.8053286" @default.
- W2757202264 hasPublicationYear "2016" @default.
- W2757202264 type Work @default.
- W2757202264 sameAs 2757202264 @default.
- W2757202264 citedByCount "1" @default.
- W2757202264 countsByYear W27572022642022 @default.
- W2757202264 crossrefType "proceedings-article" @default.
- W2757202264 hasAuthorship W2757202264A5033661594 @default.
- W2757202264 hasAuthorship W2757202264A5056511153 @default.
- W2757202264 hasConcept C115961682 @default.
- W2757202264 hasConcept C153180895 @default.
- W2757202264 hasConcept C154945302 @default.
- W2757202264 hasConcept C31601959 @default.
- W2757202264 hasConcept C31972630 @default.
- W2757202264 hasConcept C41008148 @default.
- W2757202264 hasConcept C42011625 @default.
- W2757202264 hasConcept C58166 @default.
- W2757202264 hasConcept C69744172 @default.
- W2757202264 hasConceptScore W2757202264C115961682 @default.
- W2757202264 hasConceptScore W2757202264C153180895 @default.
- W2757202264 hasConceptScore W2757202264C154945302 @default.
- W2757202264 hasConceptScore W2757202264C31601959 @default.
- W2757202264 hasConceptScore W2757202264C31972630 @default.
- W2757202264 hasConceptScore W2757202264C41008148 @default.
- W2757202264 hasConceptScore W2757202264C42011625 @default.
- W2757202264 hasConceptScore W2757202264C58166 @default.
- W2757202264 hasConceptScore W2757202264C69744172 @default.
- W2757202264 hasLocation W27572022641 @default.
- W2757202264 hasOpenAccess W2757202264 @default.
- W2757202264 hasPrimaryLocation W27572022641 @default.
- W2757202264 hasRelatedWork W1991721586 @default.
- W2757202264 hasRelatedWork W2057200091 @default.
- W2757202264 hasRelatedWork W2166685675 @default.
- W2757202264 hasRelatedWork W2341735422 @default.
- W2757202264 hasRelatedWork W2359631359 @default.
- W2757202264 hasRelatedWork W2375921219 @default.
- W2757202264 hasRelatedWork W2767265881 @default.
- W2757202264 hasRelatedWork W2808407302 @default.
- W2757202264 hasRelatedWork W2972878997 @default.
- W2757202264 hasRelatedWork W3132484442 @default.
- W2757202264 isParatext "false" @default.
- W2757202264 isRetracted "false" @default.
- W2757202264 magId "2757202264" @default.
- W2757202264 workType "article" @default.