Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757203462> ?p ?o ?g. }
- W2757203462 endingPage "49" @default.
- W2757203462 startingPage "3" @default.
- W2757203462 abstract "Large scale multidimensional data are often available as multiway arrays or higher-order tensors which can be approximately represented in distributed forms via low-rank tensor decompositions and tensor networks. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to reduce the dimensionality and alleviate the curse of dimensionality in a number of applied areas, especially in large scale optimization problems and deep learning. We briefly review and provide tensor links between low-rank tensor network decompositions and deep neural networks. We elucidating, through graphical illustrations, that low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters. Our focus is on the Hierarchical Tucker, tensor train (TT) decompositions and MERA tensor networks in specific applications." @default.
- W2757203462 created "2017-10-06" @default.
- W2757203462 creator A5018676117 @default.
- W2757203462 date "2017-09-23" @default.
- W2757203462 modified "2023-09-24" @default.
- W2757203462 title "Tensor Networks for Dimensionality Reduction, Big Data and Deep Learning" @default.
- W2757203462 cites W1485515906 @default.
- W2757203462 cites W1823244711 @default.
- W2757203462 cites W1857623074 @default.
- W2757203462 cites W1922629554 @default.
- W2757203462 cites W1954993463 @default.
- W2757203462 cites W1963826206 @default.
- W2757203462 cites W1967077133 @default.
- W2757203462 cites W1972547249 @default.
- W2757203462 cites W1985181952 @default.
- W2757203462 cites W1989786408 @default.
- W2757203462 cites W1991380130 @default.
- W2757203462 cites W1993482030 @default.
- W2757203462 cites W1995406764 @default.
- W2757203462 cites W1996869553 @default.
- W2757203462 cites W1998258511 @default.
- W2757203462 cites W2001518794 @default.
- W2757203462 cites W2004642969 @default.
- W2757203462 cites W2008657736 @default.
- W2757203462 cites W2016407890 @default.
- W2757203462 cites W2019377400 @default.
- W2757203462 cites W2021226554 @default.
- W2757203462 cites W2024165284 @default.
- W2757203462 cites W2036604884 @default.
- W2757203462 cites W2037360998 @default.
- W2757203462 cites W2038920431 @default.
- W2757203462 cites W2041408102 @default.
- W2757203462 cites W2051138304 @default.
- W2757203462 cites W2055670190 @default.
- W2757203462 cites W2060662954 @default.
- W2757203462 cites W2062989787 @default.
- W2757203462 cites W2063385922 @default.
- W2757203462 cites W2069840277 @default.
- W2757203462 cites W2076063813 @default.
- W2757203462 cites W2081023708 @default.
- W2757203462 cites W2081962379 @default.
- W2757203462 cites W2092332806 @default.
- W2757203462 cites W2093774709 @default.
- W2757203462 cites W2096391265 @default.
- W2757203462 cites W2103537693 @default.
- W2757203462 cites W2106771705 @default.
- W2757203462 cites W2113953196 @default.
- W2757203462 cites W2119412403 @default.
- W2757203462 cites W2133643411 @default.
- W2757203462 cites W2146897752 @default.
- W2757203462 cites W2149354085 @default.
- W2757203462 cites W2154624311 @default.
- W2757203462 cites W2158331753 @default.
- W2757203462 cites W2162213884 @default.
- W2757203462 cites W2167083368 @default.
- W2757203462 cites W2178323921 @default.
- W2757203462 cites W2260852807 @default.
- W2757203462 cites W227277429 @default.
- W2757203462 cites W2292130568 @default.
- W2757203462 cites W2314964555 @default.
- W2757203462 cites W2404400936 @default.
- W2757203462 cites W2469230926 @default.
- W2757203462 cites W2490308495 @default.
- W2757203462 cites W2493665548 @default.
- W2757203462 cites W2513671774 @default.
- W2757203462 cites W2516041031 @default.
- W2757203462 cites W2550848904 @default.
- W2757203462 cites W2579243405 @default.
- W2757203462 cites W2582761306 @default.
- W2757203462 cites W2593392256 @default.
- W2757203462 cites W2617994470 @default.
- W2757203462 cites W2743636838 @default.
- W2757203462 cites W2919115771 @default.
- W2757203462 cites W2962961454 @default.
- W2757203462 cites W2963744098 @default.
- W2757203462 cites W303777154 @default.
- W2757203462 cites W3099026129 @default.
- W2757203462 cites W3099152244 @default.
- W2757203462 cites W3099497510 @default.
- W2757203462 cites W3105432754 @default.
- W2757203462 cites W3105925603 @default.
- W2757203462 cites W4237171445 @default.
- W2757203462 cites W4255975175 @default.
- W2757203462 cites W4292363360 @default.
- W2757203462 cites W50417968 @default.
- W2757203462 cites W562395476 @default.
- W2757203462 cites W566555209 @default.
- W2757203462 cites W98511907 @default.
- W2757203462 doi "https://doi.org/10.1007/978-3-319-67946-4_1" @default.
- W2757203462 hasPublicationYear "2017" @default.
- W2757203462 type Work @default.
- W2757203462 sameAs 2757203462 @default.
- W2757203462 citedByCount "11" @default.
- W2757203462 countsByYear W27572034622018 @default.
- W2757203462 countsByYear W27572034622019 @default.
- W2757203462 countsByYear W27572034622020 @default.
- W2757203462 countsByYear W27572034622022 @default.
- W2757203462 crossrefType "book-chapter" @default.